
SCHWERPUNKT

Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011 Seite 41

Software Failures, Security, and
Cyberattacks

by Charles Perrow, Yale University, New
Haven CT, USA

This paper will be concerned with faulty
software code that is combined with an in-
tegrated, rather than modular architecture,
thus posing a cyberterror threat to our criti-
cal infrastructure. While faulty software code
is ubiquitous and enables cyberattacks, I will
argue that the greater threat for catastroph-
ic events are managerial strategies. Large,
dominant companies favor integrated, rather
than modular software-system architectures.
A small part of the software embedded in crit-
ical technical systems may compromise the
much larger part.

1 Introduction

Software failures have yet to have catastrophic
consequences for society, and their effect upon
critical infrastructures has been limited (Rah-
man et al. 2006). While faulty software code is
ubiquitous, it is not often exploited, and when
it is, it is largely because hackers use a fault to
penetrate the system, mostly to commit financial
fraud. The extent of the fraud is huge, but the fi-
nancial firms that bear most of the cost tolerate it;
Internet financial transactions have grown much
faster than the amount of fraud. This paper will be
more concerned with faulty code that is combined
with an integrated, rather than modular architec-
ture, thus posing a cyberterror threat to our criti-
cal infrastructure. (I will also limit the discussion
to operating systems (OS), and ignore the newer
security breaches involving the root directory,
buggy servers, and such things as the domain
name system DNS.) As software becomes ever
more ubiquitous, it is finding its way into all of
our critical infrastructures, including those loaded
with deadly substance. It may be only a matter of
time – five or ten years perhaps – before we have
a software failure, whether inadvertent or deliber-
ate, that kills 1,000 people or more. But, as yet,
our risky systems have proven to be robust, even
with ubiquitous software failures.

The current and mounting concern is the
risk of cyberattacks that deny service or take
over systems. While faulty software enables
cyberattacks, I will argue that the more serious
cause is managerial strategies that make attacks
easier, because they favor integrated, rather than
modular system architectures. The Internet runs
on UNIX, which is quite secure, but the user
community mostly utilizes vulnerable Windows
products when accessing the Internet, allow-
ing intrusion from malicious hackers, business
competitors, foreign states, and from terrorists,
though this last has yet to occur.

2 Control Systems

The highest rate of cyber attacks in the U.S. –
largely unsuccessful as yet – are directed at
companies dealing with the nation’s critical in-
frastructure, including power supply and -trans-
mission, chemical plants, financial institutions,
transportation, and even manufacturing. Of par-
ticular concern are attacks on distributed control
systems (DCS), programmable logic controllers
(PLC), supervisory control and data acquisi-
tion (SCADA) systems, and related networked-
computing systems. I will refer to all of these as
“control systems” or SCADA systems. The se-
curity aspect is not limited to Internet security;
indeed, according to one estimate, 70 percent of
cybersecurity incidents are inadvertent, and do
not originate in the Internet (Weiss et al. 2007).
However, non-Internet incidents will be random,
while a strategic adversary may direct targeted
attacks from the Internet.

2.1 Attacks upon SCADA Systems

SCADA systems automatically monitor and ad-
just switching, manufacturing, and other process
control activities, based on digitized feedback
data gathered by sensors. They usually lie in re-
mote locations, are unmanned, and are accessed
periodically via telecommunication links. One
source notes that there has been a tenfold in-
crease in the number of successful attacks upon
SCADA systems between 1981 and 2004, but
without disclosing their actual number (Wilson

SCHWERPUNKT

Seite 42 Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011

2005). These software failures might seem to be
surprising, since these are proprietary systems
that are, uniquely, custom-built, and use only one
or a few microprocessors or computers. They are
thoroughly tested and in constant use, allowing
bugs to be discovered and corrected. Their soft-
ware stems predominantly from organizations
such as SAP, a huge software and service firm,
or IBM – the largest software firm. IBM’s CICS
service runs ATM programs, credit card transac-
tions, travel reservations, real-time systems in
utilities and banks, and much more. SAP is used
in most of the Fortune 500 workstations and “is a
more potent monopolistic threat to the U.S. than
Microsoft” (Campbell-Kelly 2003, p. 197). It is
first and foremost among financial management
systems, human capital management, enterprise
asset management systems, and manufacturing
operations (Bailor 2006). Depending upon how
financial size is measured, SAP usually rates
among the top ten in terms of software revenue.

Apparently, SAP- and CICS softwares are
very secure and reliable in themselves, as they
are continually tested in operation, and their
vendors work extensively with the customers
(Campbell-Kelly 2003, p. 191–198; Cusumano
2004). They are not “plug and play” software,
but are linked to such software. Increasing num-
bers of organizations want their industrial control
systems to be linked to more general office pro-
grams, because of the valuable data they gener-
ate, because the data can be accessed online, and
for accounting and other business reasons. This
is the source of two types of problems.

First, information technology (IT)-experts
working mainly from the front office have little
understanding of the industrial control systems
they link up to, and control system professionals
have little understanding of IT operations. The
number of experts with knowledge of both fields
is roughly estimated to be about 100 in the U.S.
(according to one expert in personal communi-
cation 2008). Consequently, faulty interactions
between the two systems cause errors in cyberse-
curity that can disrupt operations, and although
there are no known instances of this, it leaves the
systems vulnerable to deliberate attacks (Weiss
2007). To the annoyance and alarm of cybercon-
trol-system experts, IT experts do not acknowl-

edge this problem area. Complexly-interactive
systems require unusual organizational struc-
tures and leadership to surmount such problems.

2.2 Safety of Commercial-off-the-shelf
Software

Second, and much more important, the comput-
ers are connected through the operating systems
with computers in the front office of the firm.
These have applications based upon widely-
used commercial-off-the-shelf (COTS) software
products. By integrating the front office with the
industrial operating systems, no matter how reli-
able and secure the latter are, they are affected by
the insecurity of the COTS. The most common
source of these front-office products is likely to
be Microsoft, as its Office programs dominate
the market. Not all COTS products are from Mi-
crosoft. Apple’s Mac products are COTS, and so
is “open source” software, such as Unix and its
offspring Linux. But the vast majority of COTS
products that run in the Internet have a Micro-
soft origin. Microsoft accounts for only about 10
percent of the software production (Campbell-
Kelly 2003, p. 234), but most software is written
for custom, in-house applications, or to connect
with chips in stand-alone applications, down
to the lowly electric toasters. A much smaller
amount of software is plug-and-play, that is,
“shrink wrap”, mass-market software. Microsoft
writes over half of that software, and the critical
infrastructure uses it.

The problem here is, obviously, connecting
reliable systems to non-secure, bug-laden soft-
ware, whether it is in the server, or in the oper-
ating system, such as Windows XP or Vista, or
applications that run on it, such as Office or Pow-
erPoint. These products are necessarily quickly
pushed onto the market to gain a competitive
edge. When designing malicious code, attackers
take advantage of vulnerabilities in software. In
2006, there were more than 8,000 reports of vul-
nerabilities in marketed software, most of which
could easily have been avoided, according to
Carnegie Mellon University’s computer emer-
gency response team (CERT 2007).

SAP has a close working relationship with
Microsoft, so they know what they are linking

SCHWERPUNKT

Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011 Seite 43

up to, and undoubtedly try to insure that the
Microsoft products they connect to are reliable
and secure. But Microsoft products are not very
reliable and secure, though the company has re-
portedly improved them in the last decade. Until
recently, studies consistently showed that open
source software and Unix and Linux operating
systems were more reliable and secure and that
they could produce patches more quickly when
needed. More recent research has challenged
that; Microsoft is doing somewhat better than
Apple in patching and in removing bugs, but it
was a Windows-vulnerability that allowed the
immensely powerful Stuxnet worm to infect the
Siemens-centrifuges in Iran.

2.3 Components Interdependency:
Modularity and Complexity

Some very interesting work on error propagation
strongly supports the idea that open source soft-
ware in particular, and Apple software to a lesser
degree, is more resilient than proprietary soft-
ware. It involves modularity, where components
within a module exhibit high interdependency,
while the modules themselves are independent.
Complexity, which is the enemy of reliability,
can be reduced through modularizing a system
(for a more extended discussion of modularity in
a different context, see Perrow 2009).

Building from an integrated design is, in
many cases, cheaper and faster than modular-
ity. There is no need for complicated interfaces
between modules; there will be more common
modes that reduce duplications of all kinds of
inputs and components, and there are fewer as-
sembly problems. If it also prevents competing
applications from running on the system because
of its integrated design, there are good reasons
to prefer it. But it increases complexity, and
thus allows the unexpected interaction of errors,
and necessitates tight coupling, both of which
can lead to “normal accidents” (Perrow 1999).
Modular designs facilitate testing, since modules
can be isolated and tested, then the interfaces of
the modules tested with the modules they inter-
act with, whereas integrated designs can only be
tested by testing the system as a whole. Modular-

ity promotes loose coupling, so that errors do not
interact and cascade through the system.

Modularity also allows freedom for inno-
vation within the module, irrespective of other
modules or the system as a whole, as long as
interface requirements are met. Modular de-
signs make rapid product change easier, since
the whole system does not need to be redesigned
– something Microsoft has found to be very
difficult and time-consuming. Most important,
a hacker or terrorist who is able to penetrate a
module – e.g., an application that floats on top
of the OS – cannot as easily reach into the kernel
of the OS, since the application or module is not
integrated into the kernel but only connected to
it by the interface, which can more easily be pro-
tected from an intruder. The denial-of-service
(DoS) attack upon Estonia in 2007 was made
possible because Microsoft software allowed
intruders to establish botnets and make a DoS
attack (Perrow 2007). It has occurred before;
NATO was the target of a much smaller, but still
disruptive attack in 1999, when it was fighting in
Serbia. It is estimated that over half of the 330
million PCs in the US are infected with bots.
But no discussion of these attacks seems to have
made the connection between bot-vulnerability
and Microsoft’s integrated architecture.

Some authors argue that open source soft-
ware is inherently more modular than propri-
etary software. Alan MacCormack et al. (2006)
compared programs developed with open source
software with those developed in proprietary
systems. The former had fewer “propagation
costs” – a measure which registers the extent to
which a change in the design of one component
affects other components. Open source software
has a more modular architecture, largely because
multiple users in different locations work on par-
ticular parts of it, rather than on the whole sys-
tem. Proprietary systems are more strongly in-
tegrated, and are designed by a collocated team.
MacCormack and associates compared products
that fulfil similar functions, but were developed
either by open-source- or closed-source develop-
ers. They found that changes in the former were
limited to the module, whereas in the latter, the
changes affected many more system compo-
nents. The proprietary systems were thus less

SCHWERPUNKT

Seite 44 Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011

adaptable when changes were made. The impli-
cation is that, when there are threats to functions
in the system, such as attempts to penetrate or
take the system over, the open-source programs
will be more responsive in thwarting the threats
and isolating them, although do not discuss this
aspect (MacCormack et al. 2006).

While MacCormack et al. found that Ap-
ple’s Macintosh system was indeed more modu-
lar than the proprietary systems they examined
(they could not include Microsoft products be-
cause their kernels are not available for exami-
nation), the Mac was considerably less modular
than open-source systems such as Linux. In one
striking “natural experiment”, they compared
Mozilla, a proprietary system, before and after
a major rewrite that was designed to reduce its
complexity. The redesign managed to make it
even more modular than a Linux system (Mac-
Cormack et al. 2007a). Thus, collocated teams
can intentionally design in modularity , though
modularity is more likely to be a product of
an architecture that is iteratively designed by
dispersed software writers. In other studies,
MacCormack and associates (2007b) managed
to match five examples of designs where they
could compare the open source- and the pro-
prietary products, and found striking support
for their hypothesis that the distributed teams
generated loosely-coupled systems, and single
teams generated tightly-coupled ones. Tightly-
coupled systems were more vulnerable to er-
rors. Organizational structures are important
in complex, tightly-coupled systems. As they
put it in one paper: “Tightly coupled compo-
nents are more likely to survive from one de-
sign version to the next, implying that they are
less adaptable via the processes of exclusion or
substitution; they are more likely to experience
‘surprise’ dependency additions unrelated to
new functionality, implying that they demand
greater maintenance efforts; and they are harder
to augment, in that the mix of new components
is more modular than the legacy design” (Mac-
Cormack et al. 2007b, p. 26).

Thus, it may be much more difficult to at-
tack open-source systems than proprietary ones,
unless the latter are explicitly modular in their
architecture. A Congressional Research Service

report on software and critical infrastructure
stresses the vulnerability of using COTS prod-
ucts on otherwise secure and reliable systems
(Wilson 2005). Unfortunately, it does not men-
tion the source of most COTS products. The
operating systems and programs are not likely
to be Apple products – which account for less
than five percent of the market – but are quite
likely to be Microsoft systems, namely one of
the many versions of Windows, which can be
configured to run SAP- or IBM programs. But
SAP or IBM programs are generally run on
Linux or Unix systems. Even if the organiza-
tion’s computers are running on Linux or Unix,
Windows Office applications can be adapted to
run on systems such as Linux or Unix. Thus,
a small part of the software in use in critical
systems may compromise the much larger part,
making Microsoft’s software the “pointy end”
of both the reliability-, and, as we shall see, of
the security problem.

3 The Cyber-threat

Various actors have gained unauthorized access
to nuclear-power plants and other power stations,
financial institutions, corporations, intelligence
agencies, and the U.S. Defense Department.
As yet, we have not identified terrorists among
them; they are more likely to be “hackers,” cor-
porations, or foreign nations. I have argued, but
cannot prove, that the problem lies in insecure
and faulty software, much of it from Microsoft.

An academic expert said in 2003, “There
is little evidence of improvement in the security
features of most [software] products; developers
are not devoting sufficient effort to apply lessons
learned about the sources of vulnerabilities [...]
We continue to see the same types of vulnerabili-
ties in newer versions of products that we saw in
earlier versions. Technology evolves so rapidly
that vendors concentrate on time to market, often
minimizing that time by placing a low priority on
security features. Until their customers demand
products that are more secure, the situation is un-
likely to change” (Wilson 2005, p. 65). Why is
there a lack of demand for more secure products?
There are several reasons.

SCHWERPUNKT

Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011 Seite 45

(1) There is a substantial problem of infor-
mation. Since about 80 percent of the breaches
are not publicly announced, graded by threat in-
tensity, and analyzed, it is difficult to know the
extent of the problems, and who or what is at
fault. At best, we get vague estimates of intru-
sions, etc., but little indication of their serious-
ness, and no indication of which software was
running at the time. The victims, such as firms,
are unwilling to disclose their failures for reasons
of proprietary rights, reputation, and security.

(2) The field of software applications is
evolving so fast that users are continually put-
ting their operating systems and application
programs to uses that were unforeseen by those
who designed the product; it is impossible to an-
ticipate just how a software program is going to
be used, including the other programs it will in-
teract with, intentionally or unintentionally. The
problem of faulty or incomplete specifications is
repeatedly noted in the literature on failures, and
it applies to security as well, particularly when
secure systems are linked to insecure programs
running in the Internet.

(3) It is an article of faith in the software
branch that the evident shortage of qualified pro-
grammers has led to “quick and dirty” training
to meet the demand, without adequate private
or public funds to increase the training’s qual-
ity (Jackson et al. 2007). This, along with orga-
nizational production pressures, may account for
a good bit of the sloppy software in existence.
For some reason unclear to me, bright students
in the U.S. have shunned engineering in general
and programming in particular to the advantage
of other fields, even though programming seems
to be lucrative. It may have something to do
with the general decline in mathematical literacy
among young people.

(4) There is a market failure. When Micro-
soft gained control of the PC market, reliability
was not a pressing concern; customers wanted
features, and very few were running critical sys-
tems on their PC. Security was not a concern, be-
cause there was no Internet. When the Microsoft
operating system expanded, the new versions
had to be compatible with the older ones, re-
taining the unreliability and lack of security that
became increasingly problematical. By the time

Microsoft products were tied into our critical in-
frastructure, there was no incentive to bring out
new products that addressed reliability and se-
curity concerns; these would have been incom-
patible with previous ones, and most important,
the market for secure software was and still is
quite small. The market failure is that, to ham-
per competition, the company persisted in using
an architecture that made its product vulnerable
to intruders, and since it had extensive market
control almost from the start, competitors with
less vulnerable products could not establish the
critical mass of users or the easy interoperability
necessary to increase their market share.

Why, then, if we have what was once called
a “monoculture” problem, where 90 percent of
operating systems, with all their faulty soft-
ware, come from Microsoft, have we not seen
vastly more bugs, crashes, penetrations result-
ing in economic fraud, denial of service, data
theft, or damage to equipment in our critical in-
frastructure? Because the operating systems are
only one part of the larger system. A widespread
Internet worm, for example, may affect millions
of computers, but so far has not affected the bil-
lions of users on the net. These billions have
millions of different configurations of antivirus-
protection software and, at different levels, they
are running on different networks with differ-
ent firewalls and router policies, and on differ-
ent servers with different services. There is an
inescapable modularity here. While we need a
monoculture at the top, since we all need to use
TCP/IP, HTML, PDF, and a lot of other devices,
below that level there is far less interdependence
than we might think. A hacker or a national state
can easily shut down the email facilities of a
small part of the U.S. Defense Department, but
for the U.S. or Israel to target the centrifuges
built by Siemens and used in Iran, or cause a
nuclear-power plant meltdown, would require
extraordinary resources, and would still be a
single target. Breaking the Windows monopoly
with cloud computing will certainly help reduce
the intrusions that hackers, thieves, corporate
spies, national states, and the still unrealized
threat that terrorists pose, but the internet is still
a remarkably robust distributed system.

SCHWERPUNKT

Seite 46 Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011

4 Conclusion

Nowadays, the overriding problem has been
the sheer size and complexity of the systems
named above, making specifications regarding
all possible interactions and uses nearly impos-
sible. Simultaneously, certain software systems
reach a precarious level of dissemination, not
only in private households, but also in large
technical systems. In my opinion, virtually the
entire US critical infrastructure is at risk. It is
ripe for a “normal accident” that threatens to
have catastrophic consequences one of these
days (Perrow 1999).

References

Bailor, C., 2006: For CRM, ERP, and SCM, SAP
Leads the Way. Destination CRM.com. July 5;
http://www.destinationcrm.com/articles/default.
asp?ArticleID=6162 (download 28.10.11)
Campbell-Kelly, M., 2003. From Airline Reservations
to Sonic the Hedgehog: A History of the Software In-
dustry. Cambridge, MA
CERT, 2007: CERT Statistics. CERT; http://www.
cert.org/stats/cert_stats.html (download 28.10.11)
Cusumano, M.A., 2004: The Business of Software.
New York
Jackson, D.; Martyn, Th.; Millett, L.I., 2007: Soft-
ware for Dependable Systems: Sufficient Evidence?
Washington, DC: National Research Council
MacCormack, A.; Rusnak, J.; Baldwin, C.Y.; 2006:
Exploring the Structure of Complex Software De-
signs: An Empirical Study of Open Source and Pro-
prietary Code. In: Management Science 52 (2006),
pp. 1015–1030
MacCormack, A.; Rusnak, J.; Baldwin, C.Y.; 2007a:
Exploring the Duality Between Product and Organi-
zational Architectures: A Test of the Mirroring Hy-
pothesis. Working Paper 08-039, Harvard Business
School; http://www.hbs.edu/research/pdf/08-039.pdf
(download 28.10.11)
MacCormack, A.; Rusnak, J.; Baldwin, C.Y.; 2007b:
The Impact of Component Modularity on Design
Evolution: Evidence from the Software Industry.
Working Paper 08-038, Harvard Business School;
http://www.hbs.edu/research/pdf/08-038.pdf (down-
load 28.10.11)
Perrow, C., 1999: Normal Accidents: Living with
High Risk Technologies. Princeton, NJ

Perrow, C., 2007: Microsoft Attacks Estonia. In:
Huffington Post May 26, 2007
Perrow, C., 2009: Modeling Firms in the Glob-
al Economy: New Forms, New Concentra-
tions. In: Theory and Society 38 (2009), pp.
217–243; http://www.springerlink.com/content/
x865g84476223212/ (download 28.10.11)
Rahman, H.A.; Beznosov, K.; Marti, J.R., 2006: Iden-
tification of Sources of Failures and their Propagation
in Critical Infrastructures from 12 Years of Public
Failure Reports; http://www.ece.ubc.ca/~rahmanha/
cris2006_CS2_paper.pdf (download 28.10.11)
Weiss, J.M.; Cybersecurity Committee on Homeland
Security’s Subcommittee on Emerging Threats, and
Science and Technology; U.S. House of Representa-
tives, 2007: Control Systems Cyber Security. Wash-
ington, DC: U.S. Government. October 17, 2007
Wilson, C., 2005: Computer Attack and Cyberterror-
ism: Vulnerabilities and Policy Issues for Congress.
Library of Congress. April 1, 2005

Contact

Prof. em. Charles Perrow
Yale University
Sociology Department
P.O. Box 20 82 65
New Haven CT 06520-8265, USA

« »

