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Software Failures, Security, and 
Cyberattacks

by Charles Perrow, Yale University, New 
Haven CT, USA

This paper will be concerned with faulty 
software code that is combined with an in-
tegrated, rather than modular architecture, 
thus posing a cyberterror threat to our criti-
cal infrastructure. While faulty software code 
is ubiquitous and enables cyberattacks, I will 
argue that the greater threat for catastroph-
ic events are managerial strategies. Large, 
dominant companies favor integrated, rather 
than modular software-system architectures. 
A small part of the software embedded in crit-
ical technical systems may compromise the 
much larger part.

1 Introduction

Software failures have yet to have catastrophic 
consequences for society, and their effect upon 
critical infrastructures has been limited (Rah-
man et al. 2006). While faulty software code is 
ubiquitous, it is not often exploited, and when 
it is, it is largely because hackers use a fault to 
penetrate the system, mostly to commit financial 
fraud. The extent of the fraud is huge, but the fi-
nancial firms that bear most of the cost tolerate it; 
Internet financial transactions have grown much 
faster than the amount of fraud. This paper will be 
more concerned with faulty code that is combined 
with an integrated, rather than modular architec-
ture, thus posing a cyberterror threat to our criti-
cal infrastructure. (I will also limit the discussion 
to operating systems (OS), and ignore the newer 
security breaches involving the root directory, 
buggy servers, and such things as the domain 
name system DNS.) As software becomes ever 
more ubiquitous, it is finding its way into all of 
our critical infrastructures, including those loaded 
with deadly substance. It may be only a matter of 
time – five or ten years perhaps – before we have 
a software failure, whether inadvertent or deliber-
ate, that kills 1,000 people or more. But, as yet, 
our risky systems have proven to be robust, even 
with ubiquitous software failures.

The current and mounting concern is the 
risk of cyberattacks that deny service or take 
over systems. While faulty software enables 
cyberattacks, I will argue that the more serious 
cause is managerial strategies that make attacks 
easier, because they favor integrated, rather than 
modular system architectures. The Internet runs 
on UNIX, which is quite secure, but the user 
community mostly utilizes vulnerable Windows 
products when accessing the Internet, allow-
ing intrusion from malicious hackers, business 
competitors, foreign states, and from terrorists, 
though this last has yet to occur.

2 Control Systems

The highest rate of cyber attacks in the U.S. – 
largely unsuccessful as yet – are directed at 
companies dealing with the nation’s critical in-
frastructure, including power supply and -trans-
mission, chemical plants, financial institutions, 
transportation, and even manufacturing. Of par-
ticular concern are attacks on distributed control 
systems (DCS), programmable logic controllers 
(PLC), supervisory control and data acquisi-
tion (SCADA) systems, and related networked-
computing systems. I will refer to all of these as 
“control systems” or SCADA systems. The se-
curity aspect is not limited to Internet security; 
indeed, according to one estimate, 70 percent of 
cybersecurity incidents are inadvertent, and do 
not originate in the Internet (Weiss et al. 2007). 
However, non-Internet incidents will be random, 
while a strategic adversary may direct targeted 
attacks from the Internet.

2.1 Attacks upon SCADA Systems

SCADA systems automatically monitor and ad-
just switching, manufacturing, and other process 
control activities, based on digitized feedback 
data gathered by sensors. They usually lie in re-
mote locations, are unmanned, and are accessed 
periodically via telecommunication links. One 
source notes that there has been a tenfold in-
crease in the number of successful attacks upon 
SCADA systems between 1981 and 2004, but 
without disclosing their actual number (Wilson 
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2005). These software failures might seem to be 
surprising, since these are proprietary systems 
that are, uniquely, custom-built, and use only one 
or a few microprocessors or computers. They are 
thoroughly tested and in constant use, allowing 
bugs to be discovered and corrected. Their soft-
ware stems predominantly from organizations 
such as SAP, a huge software and service firm, 
or IBM – the largest software firm. IBM’s CICS 
service runs ATM programs, credit card transac-
tions, travel reservations, real-time systems in 
utilities and banks, and much more. SAP is used 
in most of the Fortune 500 workstations and “is a 
more potent monopolistic threat to the U.S. than 
Microsoft” (Campbell-Kelly 2003, p. 197). It is 
first and foremost among financial management 
systems, human capital management, enterprise 
asset management systems, and manufacturing 
operations (Bailor 2006). Depending upon how 
financial size is measured, SAP usually rates 
among the top ten in terms of software revenue.

Apparently, SAP- and CICS softwares are 
very secure and reliable in themselves, as they 
are continually tested in operation, and their 
vendors work extensively with the customers 
(Campbell-Kelly 2003, p. 191–198; Cusumano 
2004). They are not “plug and play” software, 
but are linked to such software. Increasing num-
bers of organizations want their industrial control 
systems to be linked to more general office pro-
grams, because of the valuable data they gener-
ate, because the data can be accessed online, and 
for accounting and other business reasons. This 
is the source of two types of problems.

First, information technology (IT)-experts 
working mainly from the front office have little 
understanding of the industrial control systems 
they link up to, and control system professionals 
have little understanding of IT operations. The 
number of experts with knowledge of both fields 
is roughly estimated to be about 100 in the U.S. 
(according to one expert in personal communi-
cation 2008). Consequently, faulty interactions 
between the two systems cause errors in cyberse-
curity that can disrupt operations, and although 
there are no known instances of this, it leaves the 
systems vulnerable to deliberate attacks (Weiss 
2007). To the annoyance and alarm of cybercon-
trol-system experts, IT experts do not acknowl-

edge this problem area. Complexly-interactive 
systems require unusual organizational struc-
tures and leadership to surmount such problems.

2.2 Safety of Commercial-off-the-shelf 
Software

Second, and much more important, the comput-
ers are connected through the operating systems 
with computers in the front office of the firm. 
These have applications based upon widely-
used commercial-off-the-shelf (COTS) software 
products. By integrating the front office with the 
industrial operating systems, no matter how reli-
able and secure the latter are, they are affected by 
the insecurity of the COTS. The most common 
source of these front-office products is likely to 
be Microsoft, as its Office programs dominate 
the market. Not all COTS products are from Mi-
crosoft. Apple’s Mac products are COTS, and so 
is “open source” software, such as Unix and its 
offspring Linux. But the vast majority of COTS 
products that run in the Internet have a Micro-
soft origin. Microsoft accounts for only about 10 
percent of the software production (Campbell-
Kelly 2003, p. 234), but most software is written 
for custom, in-house applications, or to connect 
with chips in stand-alone applications, down 
to the lowly electric toasters. A much smaller 
amount of software is plug-and-play, that is, 
“shrink wrap”, mass-market software. Microsoft 
writes over half of that software, and the critical 
infrastructure uses it.

The problem here is, obviously, connecting 
reliable systems to non-secure, bug-laden soft-
ware, whether it is in the server, or in the oper-
ating system, such as Windows XP or Vista, or 
applications that run on it, such as Office or Pow-
erPoint. These products are necessarily quickly 
pushed onto the market to gain a competitive 
edge. When designing malicious code, attackers 
take advantage of vulnerabilities in software. In 
2006, there were more than 8,000 reports of vul-
nerabilities in marketed software, most of which 
could easily have been avoided, according to 
Carnegie Mellon University’s computer emer-
gency response team (CERT 2007).

SAP has a close working relationship with 
Microsoft, so they know what they are linking 
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up to, and undoubtedly try to insure that the 
Microsoft products they connect to are reliable 
and secure. But Microsoft products are not very 
reliable and secure, though the company has re-
portedly improved them in the last decade. Until 
recently, studies consistently showed that open 
source software and Unix and Linux operating 
systems were more reliable and secure and that 
they could produce patches more quickly when 
needed. More recent research has challenged 
that; Microsoft is doing somewhat better than 
Apple in patching and in removing bugs, but it 
was a Windows-vulnerability that allowed the 
immensely powerful Stuxnet worm to infect the 
Siemens-centrifuges in Iran.

2.3 Components Interdependency: 
Modularity and Complexity

Some very interesting work on error propagation 
strongly supports the idea that open source soft-
ware in particular, and Apple software to a lesser 
degree, is more resilient than proprietary soft-
ware. It involves modularity, where components 
within a module exhibit high interdependency, 
while the modules themselves are independent. 
Complexity, which is the enemy of reliability, 
can be reduced through modularizing a system 
(for a more extended discussion of modularity in 
a different context, see Perrow 2009).

Building from an integrated design is, in 
many cases, cheaper and faster than modular-
ity. There is no need for complicated interfaces 
between modules; there will be more common 
modes that reduce duplications of all kinds of 
inputs and components, and there are fewer as-
sembly problems. If it also prevents competing 
applications from running on the system because 
of its integrated design, there are good reasons 
to prefer it. But it increases complexity, and 
thus allows the unexpected interaction of errors, 
and necessitates tight coupling, both of which 
can lead to “normal accidents” (Perrow 1999). 
Modular designs facilitate testing, since modules 
can be isolated and tested, then the interfaces of 
the modules tested with the modules they inter-
act with, whereas integrated designs can only be 
tested by testing the system as a whole. Modular-

ity promotes loose coupling, so that errors do not 
interact and cascade through the system.

Modularity also allows freedom for inno-
vation within the module, irrespective of other 
modules or the system as a whole, as long as 
interface requirements are met. Modular de-
signs make rapid product change easier, since 
the whole system does not need to be redesigned 
– something Microsoft has found to be very 
difficult and time-consuming. Most important, 
a hacker or terrorist who is able to penetrate a 
module – e.g., an application that floats on top 
of the OS – cannot as easily reach into the kernel 
of the OS, since the application or module is not 
integrated into the kernel but only connected to 
it by the interface, which can more easily be pro-
tected from an intruder. The denial-of-service 
(DoS) attack upon Estonia in 2007 was made 
possible because Microsoft software allowed 
intruders to establish botnets and make a DoS 
attack (Perrow 2007). It has occurred before; 
NATO was the target of a much smaller, but still 
disruptive attack in 1999, when it was fighting in 
Serbia. It is estimated that over half of the 330 
million PCs in the US are infected with bots. 
But no discussion of these attacks seems to have 
made the connection between bot-vulnerability 
and Microsoft’s integrated architecture.

Some authors argue that open source soft-
ware is inherently more modular than propri-
etary software. Alan MacCormack et al. (2006) 
compared programs developed with open source 
software with those developed in proprietary 
systems. The former had fewer “propagation 
costs” – a measure which registers the extent to 
which a change in the design of one component 
affects other components. Open source software 
has a more modular architecture, largely because 
multiple users in different locations work on par-
ticular parts of it, rather than on the whole sys-
tem. Proprietary systems are more strongly in-
tegrated, and are designed by a collocated team. 
MacCormack and associates compared products 
that fulfil similar functions, but were developed 
either by open-source- or closed-source develop-
ers. They found that changes in the former were 
limited to the module, whereas in the latter, the 
changes affected many more system compo-
nents. The proprietary systems were thus less 
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adaptable when changes were made. The impli-
cation is that, when there are threats to functions 
in the system, such as attempts to penetrate or 
take the system over, the open-source programs 
will be more responsive in thwarting the threats 
and isolating them, although do not discuss this 
aspect (MacCormack et al. 2006).

While MacCormack et al. found that Ap-
ple’s Macintosh system was indeed more modu-
lar than the proprietary systems they examined 
(they could not include Microsoft products be-
cause their kernels are not available for exami-
nation), the Mac was considerably less modular 
than open-source systems such as Linux. In one 
striking “natural experiment”, they compared 
Mozilla, a proprietary system, before and after 
a major rewrite that was designed to reduce its 
complexity. The redesign managed to make it 
even more modular than a Linux system (Mac-
Cormack et al. 2007a). Thus, collocated teams 
can intentionally design in modularity , though 
modularity is more likely to be a product of 
an architecture that is iteratively designed by 
dispersed software writers. In other studies, 
MacCormack and associates (2007b) managed 
to match five examples of designs where they 
could compare the open source- and the pro-
prietary products, and found striking support 
for their hypothesis that the distributed teams 
generated loosely-coupled systems, and single 
teams generated tightly-coupled ones. Tightly-
coupled systems were more vulnerable to er-
rors. Organizational structures are important 
in complex, tightly-coupled systems. As they 
put it in one paper: “Tightly coupled compo-
nents are more likely to survive from one de-
sign version to the next, implying that they are 
less adaptable via the processes of exclusion or 
substitution; they are more likely to experience 
‘surprise’ dependency additions unrelated to 
new functionality, implying that they demand 
greater maintenance efforts; and they are harder 
to augment, in that the mix of new components 
is more modular than the legacy design” (Mac-
Cormack et al. 2007b, p. 26).

Thus, it may be much more difficult to at-
tack open-source systems than proprietary ones, 
unless the latter are explicitly modular in their 
architecture. A Congressional Research Service 

report on software and critical infrastructure 
stresses the vulnerability of using COTS prod-
ucts on otherwise secure and reliable systems 
(Wilson 2005). Unfortunately, it does not men-
tion the source of most COTS products. The 
operating systems and programs are not likely 
to be Apple products – which account for less 
than five percent of the market – but are quite 
likely to be Microsoft systems, namely one of 
the many versions of Windows, which can be 
configured to run SAP- or IBM programs. But 
SAP or IBM programs are generally run on 
Linux or Unix systems. Even if the organiza-
tion’s computers are running on Linux or Unix, 
Windows Office applications can be adapted to 
run on systems such as Linux or Unix. Thus, 
a small part of the software in use in critical 
systems may compromise the much larger part, 
making Microsoft’s software the “pointy end” 
of both the reliability-, and, as we shall see, of 
the security problem.

3 The Cyber-threat

Various actors have gained unauthorized access 
to nuclear-power plants and other power stations, 
financial institutions, corporations, intelligence 
agencies, and the U.S. Defense Department. 
As yet, we have not identified terrorists among 
them; they are more likely to be “hackers,” cor-
porations, or foreign nations. I have argued, but 
cannot prove, that the problem lies in insecure 
and faulty software, much of it from Microsoft.

An academic expert said in 2003, “There 
is little evidence of improvement in the security 
features of most [software] products; developers 
are not devoting sufficient effort to apply lessons 
learned about the sources of vulnerabilities [...] 
We continue to see the same types of vulnerabili-
ties in newer versions of products that we saw in 
earlier versions. Technology evolves so rapidly 
that vendors concentrate on time to market, often 
minimizing that time by placing a low priority on 
security features. Until their customers demand 
products that are more secure, the situation is un-
likely to change” (Wilson 2005, p. 65). Why is 
there a lack of demand for more secure products? 
There are several reasons.



SCHWERPUNKT

Technikfolgenabschätzung – Theorie und Praxis 20. Jg., Heft 3, Dezember 2011  Seite 45

(1) There is a substantial problem of infor-
mation. Since about 80 percent of the breaches 
are not publicly announced, graded by threat in-
tensity, and analyzed, it is difficult to know the 
extent of the problems, and who or what is at 
fault. At best, we get vague estimates of intru-
sions, etc., but little indication of their serious-
ness, and no indication of which software was 
running at the time. The victims, such as firms, 
are unwilling to disclose their failures for reasons 
of proprietary rights, reputation, and security.

(2) The field of software applications is 
evolving so fast that users are continually put-
ting their operating systems and application 
programs to uses that were unforeseen by those 
who designed the product; it is impossible to an-
ticipate just how a software program is going to 
be used, including the other programs it will in-
teract with, intentionally or unintentionally. The 
problem of faulty or incomplete specifications is 
repeatedly noted in the literature on failures, and 
it applies to security as well, particularly when 
secure systems are linked to insecure programs 
running in the Internet.

(3) It is an article of faith in the software 
branch that the evident shortage of qualified pro-
grammers has led to “quick and dirty” training 
to meet the demand, without adequate private 
or public funds to increase the training’s qual-
ity (Jackson et al. 2007). This, along with orga-
nizational production pressures, may account for 
a good bit of the sloppy software in existence. 
For some reason unclear to me, bright students 
in the U.S. have shunned engineering in general 
and programming in particular to the advantage 
of other fields, even though programming seems 
to be lucrative. It may have something to do 
with the general decline in mathematical literacy 
among young people.

(4) There is a market failure. When Micro-
soft gained control of the PC market, reliability 
was not a pressing concern; customers wanted 
features, and very few were running critical sys-
tems on their PC. Security was not a concern, be-
cause there was no Internet. When the Microsoft 
operating system expanded, the new versions 
had to be compatible with the older ones, re-
taining the unreliability and lack of security that 
became increasingly problematical. By the time 

Microsoft products were tied into our critical in-
frastructure, there was no incentive to bring out 
new products that addressed reliability and se-
curity concerns; these would have been incom-
patible with previous ones, and most important, 
the market for secure software was and still is 
quite small. The market failure is that, to ham-
per competition, the company persisted in using 
an architecture that made its product vulnerable 
to intruders, and since it had extensive market 
control almost from the start, competitors with 
less vulnerable products could not establish the 
critical mass of users or the easy interoperability 
necessary to increase their market share.

Why, then, if we have what was once called 
a “monoculture” problem, where 90 percent of 
operating systems, with all their faulty soft-
ware, come from Microsoft, have we not seen 
vastly more bugs, crashes, penetrations result-
ing in economic fraud, denial of service, data 
theft, or damage to equipment in our critical in-
frastructure? Because the operating systems are 
only one part of the larger system. A widespread 
Internet worm, for example, may affect millions 
of computers, but so far has not affected the bil-
lions of users on the net. These billions have 
millions of different configurations of antivirus-
protection software and, at different levels, they 
are running on different networks with differ-
ent firewalls and router policies, and on differ-
ent servers with different services. There is an 
inescapable modularity here. While we need a 
monoculture at the top, since we all need to use 
TCP/IP, HTML, PDF, and a lot of other devices, 
below that level there is far less interdependence 
than we might think. A hacker or a national state 
can easily shut down the email facilities of a 
small part of the U.S. Defense Department, but 
for the U.S. or Israel to target the centrifuges 
built by Siemens and used in Iran, or cause a 
nuclear-power plant meltdown, would require 
extraordinary resources, and would still be a 
single target. Breaking the Windows monopoly 
with cloud computing will certainly help reduce 
the intrusions that hackers, thieves, corporate 
spies, national states, and the still unrealized 
threat that terrorists pose, but the internet is still 
a remarkably robust distributed system.
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4 Conclusion

Nowadays, the overriding problem has been 
the sheer size and complexity of the systems 
named above, making specifications regarding 
all possible interactions and uses nearly impos-
sible. Simultaneously, certain software systems 
reach a precarious level of dissemination, not 
only in private households, but also in large 
technical systems. In my opinion, virtually the 
entire US critical infrastructure is at risk. It is 
ripe for a “normal accident” that threatens to 
have catastrophic consequences one of these 
days (Perrow 1999).
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