Fast-paced research

Challenges and Opportunities of UAS for Research

Authors

DOI:

https://doi.org/10.14512/tatup.27.3.45

Keywords:

UAS in research, structure from motion, certificate of knowledge, earth system science, environmental monitoring

Abstract

Unmanned aerial systems (UAS) currently revolutionize the monitoring, observation, and research opportunities of environmental processes. They provide many positive aspects, such as high spatial and temporal resolution for environmental monitoring and the definition of the observation time. In addition, UAS allow the use of a variety of sensors and instruments and often collect data outside the realm of the optical spectrum – all leading to non-destructive and non-invasive mapping. The utilization of UAS requires a robust legal and regulatory framework that manages the public airspace and ensures that public, commercial, and academic applications are well defined and supported. This includes the requirement of a certificate of knowledge, flight route restrictions due to airspace limitations, and an authorized institution to hand out permits. These legal constraints and regulations are important and provide scientific applications with large potential, for example in the fields of earth and environmental science, agriculture and ecology, the monitoring of natural hazards, archaeology, zoology, and in security research – and many more applications.

References

Alonzo, Mike; Bookhagen, Bodo; Roberts, Dar (2014): Urban tree species mapping using hyperspectral and lidar data fusion. In: Remote Sensing of Environment 148, S. 70–83. DOI: https://doi.org/10.1016/j.rse.2014.03.018

Artieda, Jorge et al. (2009): Visual 3-D SLAM from UAVs. In: Journal of Intelligent and Robotic Systems 55, S. 229–321. DOI: https://doi.org/10.1007/s10846-008-9304-8

Azhari, Faris et al. (2017): A comparison of sensors for underground void mapping by unmanned aerial vehicles. In: M. Hudyma und Y. Potvin (Hg.): Underground mining technology. Sudbury, Australia: Australian Centre for Geomechanics. Online verfügbar unter https://papers.acg.uwa.edu.au/d/1710_33_Sennersten/33_Sennersten.pdf, zuletzt geprüft am 04. 10. 2018. DOI: https://doi.org/10.36487/ACG_rep/1710_33_Sennersten

Brell, Maximilian; Rogass, Christian; Segl, Karl; Bookhagen, Bodo; Guanter, Luis (2016): Improving sensor fusion. A parametric method for the geometric coalignment of airborne hyperspectral and lidar data. In: IEEE Transactions on Geoscience and Remote Sensing, 54 (6), S. 3460–3474. DOI: https://doi.org/10.1109/TGRS.2016.2518930

Brell, Maximilian; Segl, Karl; Guanter, Luis; Bookhagen, Bodo (2017): Hyperspectral and lidar intensity data fusion. A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration. In: Transactions on Geoscience and Remote Sensing 55 (5), S. 2799–2810. DOI: https://doi.org/10.1109/TGRS.2017.2654516

Campana, Stefano (2017): Drones in archaeology. State-of-the-art and future perspectives. In: Archaeological Prospection 24 (4), S. 275–296. DOI: https://doi.org/10.1002/arp.1569

D’Andrea, Raffaello (2014): Can drones deliver? In: IEEE Transactions on Automation Science and Engineering 11 (3), S. 647–648. DOI: https://doi.org/10.1109/TASE.2014.2326952

DFG – Deutsche Forschungsgemeinschaft (2013): Langzeitperspektiven und Infrastruktur der terrestrischen Forschung Deutschlands. Ein systemischer Ansatz. Online verfügbar unter http://www.dkn-future-earth.org/data/mediapool/strategiepapier_infrastruktur_de.pdf, zuletzt geprüft am 04. 10. 2018.

Erdelj, Milan; Król, Michal; Natalizio, Enrico (2017): Wireless sensor networks and multi-UAV systems for natural disaster management. In: Computer Networks 124, S. 72–86. DOI: https://doi.org/10.1016/j.comnet.2017.05.021

Fallavollita, Paolo et al. (2013): UAS for archeology. New perspectives on aerial documentation. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2, S. 131–135. DOI: https://doi.org/10.5194/isprsarchives-XL-1-W2-131-2013

Franke, Michael et al. (2015): Positionspapier „Research data at your fingertips“ der Arbeitsgruppe Forschungsdaten. Potsdam: Deutsches Geoforschungszentrum.

Haala, Norbert; Schwieger, Volker (2017): UAV. Anforderungen und Möglichkeiten. In: Aiham Hassan (Hg.): Unmanned Aerial Vehicles 2017 (UAV 2017). Beiträge zum 156. DVW-Seminar am 9. und 10. Februar 2017 in Stuttgart. Augsburg: Wißner-Verlag, S. 9–26. Online verfügbar unter https://geodaesie.info/system/files/privat/DVW_86_2017_UAV_2017_FINAL_170124.pdf, zuletzt geprüft am 04. 10. 2018.

He, Lvlong; Bai, Peng; Liang, Xialong; Zhang, Jiaqiang; Wang, Weijia (2018): Feedback formation control of UAV swarm with multiple implicit leaders. In: Aerospace Science and Technology 72, S. 327–334. DOI: https://doi.org/10.1016/j.ast.2017.11.020

Helbig, Kerstin (2016): Research data management training for geographers. First impressions. In: ISPRS International Journal of Geo-Information 5 (4). DOI: https://doi.org/10.3390/ijgi5040040

Iqbal, Umair et al. (2015): Selection of unmanned aerial systems (UAS) for disaster relief operations. A comparison. In: Science International (Lahore) 27 (4), S. 3199–3203.

Korn, Bernd; Edinger, Christiane (2008): UAS in civil airspace. Demonstrating „sense and avoid“ capabilities in flight trials. In: IEEE/AIAA 27th Digital Avionics Systems Conference, S. 4.D.1-1 bis 4.D.1-7. DOI: https://doi.org/10.1109/DASC.2008.4702835

Nebiker, Stephan; Annen, Adrian; Scherrer, Marco; Oesch, David (2008): A light-weight multispectral sensor for micro UAV. Opportunities for very high resolution airborne remote sensing. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37, S. 1193–1198.

Nebiker, Stephan; Lack, Natalie; Läderach, Sonja (2015): UAV-Fernerkundung. Neue Sensoren und Anwendungen. In: Geomatik Schweiz 113, S. 351–355.

Passalacqua, Paola et al. (2015): Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes. A review. In: Earth-Science Review 148, S. 174–193. DOI: https://doi.org/10.1016/j.earscirev.2015.05.012

Perroy, Ryan; Bookhagen, Bodo; Asner, Gregory; Chadwick, Oliver (2010): Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. In: Geomorphology 118, S. 288–300. DOI: https://doi.org/10.1016/j.geomorph.2010.01.009

Potthoff, Jan; Wezel, Jos Van; Razum, Matthias; Walk, Marius (2014): Anforderungen eines nachhaltigen, disziplinübergreifenden Forschungsdaten-Repositoriums. In: Paul Müller, Bernhard Neumair, Helmut Reiser und Gabi Rodosek. (Hg.): 7. DFN-Forum – Kommunikationstechnologien. Bonn: Gesellschaft für Informatik e. V., S. 11–20.

Roering, Joshua et al. (2013): You are HERE. Connecting the dots with airborne lidar for geomorphic fieldwork. In: Geomorphology 200, S. 172–183. DOI: https://doi.org/10.1016/j.geomorph.2013.04.009

Saarinen, Ninni et al. (2018): Assessing biodiversity in boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging. In: Journal of Remote Sensing 10 (2). DOI: https://doi.org/10.3390/rs10020338

Saur, Günter; Krüger, Wolfgang (2016): Change detection in UAV video mosaics combining a feature based approach and extended image differencing. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7, S. 557–562. DOI: https://doi.org/10.5194/isprsarchives-XLI-B7-557-2016

Thiels, Cornelius A.; Aho, Johnathon; Zietlow, Scott; Jenkins, Donald (2015): Use of Unmanned Aerial Vehicles for medical product transport. In: Air Medical Journal 34 (2), S. 104–108. DOI: https://doi.org/10.1016/j.amj.2014.10.011

Turner, Darren; Lucieer, Arko; Watson, Christopher (2012): An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. In: Remote Sensing 4 (5), S. 1392–1410. DOI: https://doi.org/10.3390/rs4051392

Turner, Darren; Lucieer, Arko; de Jong, Steven (2015): Time series analysis of landslide dynamics using an Unmanned Aerial Vehicle (UAV). In: Journal of Remote Sensing Vol 7 (2), S. 1736–1757. DOI: https://doi.org/10.3390/rs70201736

Villa, Tommaso; Gonzalez, Felipe; Miljievic, Branka; Ristovski, Zoran; Morawska, Lidia (2016): An overview of small unmanned aerial vehicles for air quality measurements. Present applications and future prospectives. In: Sensors 16 (7). DOI: https://doi.org/10.3390/s16071072

Westoby, Matthew; Brasington, James; Glasser, Neil; Hambrey, Michael; Reynolds, John (2012): ‚Structure-from-Motion‘ photogrammetry. A low-cost, effective tool for geoscience applications. In: Geomorphology 179, S. 300–314. DOI: https://doi.org/10.1016/j.geomorph.2012.08.021

Xu, Zhiqiang et al. (2014): Development of an UAS for post-earthquake disaster surveying and its application in ms7.0 Lushan earthquake, Sichuan, China. In: Computers & Geoscience 68, S. 22–30. DOI: https://doi.org/10.1016/j.cageo.2014.04.001

Published

11.12.2018

How to Cite

1.
Schneider S, Bookhagen B, Eschbach P. Fast-paced research: Challenges and Opportunities of UAS for Research. TATuP [Internet]. 2018 Dec. 11 [cited 2024 Sep. 13];27(3):45-50. Available from: https://www.tatup.de/index.php/tatup/article/view/172