How to assess technological developments in basic research?

Enabling formative interventions regarding sustainability, ethics, and consumer issues at an early stage




technology assessment, development-integrated, basic research, transdisciplinarity


In an era of ever faster and more momentous technological development, both technology assessment and transdisciplinary interventions are in danger of structurally lagging behind the speed of innovation. This paper proposes a new tiered approach to technology assessment at low Technology Readiness Levels that enables a both rapid and concerted interdisciplinary science response to this Great Acceleration. Covering sustainability, ethics, and consumer issues, this approach encourages and enables the innovators themselves to conduct assessments embedded in the innovation process as early as possible. Suitable tools for early engagement that help facilitate development-integrated assessments are introduced and described. The design and use of these instruments in the field of basic research is illustrated using the Cluster of Excellence livMatS as an example.


Abels, Gabriele; Bora, Alfons (2013): Partizipative Technikfolgenabschätzung und -bewertung. In: Georg Simonis (ed.): Konzepte und Verfahren der Technikfolgenabschätzung. Wiesbaden: Springer, pp. 109–128.

Alliance of Science Organisations in Germany (2019): Final memorandum of the campaign freedom is our system. Available online at:, last accessed on 07. 01. 2021.

Bierdel, Marius et al. (2019): Ökologische und ökonomische Bewertung des Ressourcenaufwands. Additive Fertigungsverfahren in der industriellen Produktion. Berlin: Self-published. Available online at:, last accessed on 07. 01. 2021.

Bunke, Dirk et al. (2017): Reach radar network. Systematic identification and prioritisation of substances of very high concern for the group of galvanisation companies. Freiburg: Öko-Institut e. V. Tool available online at:, last accessed on 07. 01. 2021.

Digmayer, Claas; Jakobs, Eva-Maria (2016): Risk perception of complex technology innovations. Perspectives of experts and laymen. In: Proceedings of IEEE International Professional Communication Conference, 9 p.

Esser, Falk et al. (2019): Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics. In: Uriel Martinez-Hernandez et al. (eds.): Biomimetic and biohybrid systems. 8th international conference. Cham: Springer, pp. 114–121.

Esser, Falk; Auth, Philipp; Speck, Thomas (2020): Artificial venus flytraps. A research review and outlook on their importance for novel bioinspired materials systems. In: Front. Robot. AI 7: 75, 13 p.

Ferretti, Johanna et al. (2016): Reflexionsrahmen für Forschen in gesellschaftlicher Verantwortung. BMBF-Projekt „LeNa – Nachhaltigkeitsmanagement in außeruniversitären Forschungsorganisationen“. Berlin: LeNa. Available online at:, last accessed on 07. 01. 2021.

Friedman, Batya; Hendry, David (2019): Value sensitive design. Shaping technology with moral imagination. Cambridge: MIT Press.

Gibson, Ian; Rosen, David; Stucker, Brent (eds.) (2015): Additive manufacturing technologies. New York: Springer.

Gleich, Arnim von (2013): Prospektive Technikbewertung und Technikgestaltung zur Umsetzung des Vorsorgeprinzips. In: Georg Simonis (ed.): Konzepte und Verfahren der Technikfolgenabschätzung. Wiesbaden: Springer, pp. 51–73.

Grunwald, Armin (1999): Ethische Grenzen der Technik? Reflexionen zum Verhältnis von Ethik und Praxis. In: Stephan Saupe and Armin Grunwald (eds.): Ethik in der Technikgestaltung. Praktische Relevanz und Legitimation. Berlin: Springer, pp. 221–252.

Grunwald, Armin (2010): Technikfolgenabschätzung. Eine Einführung. Berlin: edition sigma.

Grunwald, Armin (2019): Technology assessment in theory and practice. New York: Routledge.

Höfele, Philipp (2020): New technologies and the ‘heuristics of fear’. The meaning and prehistory of an emotion in Jonas, Heidegger and Hegel. In: Hungarian Philosophical Review 64, pp. 166–182.

Jimenez, Hernando; Schutte, Jeffery; Mavris, Dimitri (2011): System readiness and risk assessment for advanced vehicle concepts. Discussion of fundamental concepts. In: Proceedings of 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: American Institute of Aeronautics and Astronautics, 04.–07. 01. 2011, 18 p.

Liggieri, Kevin; Müller, Oliver (eds.) (2019): Mensch-Maschine-Interaktion. Handbuch zu Geschichte – Kultur – Ethik. Berlin: Springer.

livMatS – Living, Adaptive and Energy-autonomous Materials Systems (2020): Materials systems of the future. Available online at, last checked on 07. 01. 2021.

MacLeod, Miles (2018): What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. In: Synthese 195, pp. 697–720.

Moultrie, James (2015): Understanding and classifying the role of design demonstrators in scientific exploration. In: Technovation 43–44, pp. 1–16.

Owen, Richard; Macnaghten, Phil; Stilgoe, Jack (2012): Responsible research and innovation. From science in society to science for society, with society. In: Science and Public Policy 39 (6), pp. 751–760.

Rhea, Carter; Reuter, Lisa; Piereder, Jinelle (2020): Valence software release.

Rockström, Johan et al. (2009): A safe operating space for humanity. Nature 461 (7263), pp. 472–475.

Ross, William (2003): The impact of next generation test technology on aviation maintenance. In: Proceedings of Autotestcon. IEEE Systems Readiness Technology Conference, Anaheim, CA, U.S.A., 22.–25. 09. 2003, pp. 2–9.

Scarano, Nico (2002): Metaethik. Ein systematischer Überblick. In: Marcus Düwell, Christoph Hübenthal and Micha Werner (eds.): Handbuch Ethik. Stuttgart: Metzler, pp. 25–35.

Steffen, Will; Broadgate, Wendy; Deutsch, Lisa; Gaffney, Owen; Ludwig, Cornelia (2015): The trajectory of the Anthropocene. The Great Acceleration. In: Anthropocene Review 2 (1), pp. 81–98.

Steffen, Will; Grinevald, Jacques; Crutzen, Paul; McNeill, John (2011): The Anthropocene. Conceptual and historical perspectives. In: Philosophical transactions of the Royal Society A 369 (1938), pp. 842–867.

Thagard, Paul (2010): EMPATHICA. A computer support system with visual representations for cognitive-affective mapping. In: K. McGregor (ed.) Proceedings of the workshop on visual reasoning and representation. Menlo Park, CA: AAAI Press, pp. 79–81), 11.–15. 07. 2010.

United Nations (2016): Report of the inter-agency and expert group on sustainable development goal indicators. Available online at:, last accessed on 07.012021.

VDI – Verein Deutscher Ingenieure (2000): VDI Richtlinie 3780. Technology assessment. Concepts and foundations. Berlin: Beuth.

VDI (2017): VDI Richtlinie 4605. Evaluation of sustainability. Berlin: Beuth.

Walther, Andreas (2019): Viewpoint. From responsive to adaptive and interactive materials and materials systems. A roadmap. In: Advanced Materials 32, AI 1905111.

Warschat, Joachim; Schimpf, Sven; Korell, Markus (eds.) (2015): Technologien frühzeitig erkennen, Nutzenpotenziale systematisch bewerten. Methoden, Organisation, semantische Werkzeuge zur Informationsgewinnung und -speicherung. Ergebnisse des Verbundforschungsprojekts synctech – synchronisierte Technologieadaption als Treiber der strategischen Produktinnovation. Stuttgart: Fraunhofer Verlag.

Wohlgenannt, Rudolf (1993): Philosophische Betrachtungen und Wissenschaftstheoretische Analysen. Vienna: Springer.

Wong, Kaufui; Hernandez, Aldo (2012): A review of additive manufacturing. In: ISRN mechanical engineering, AI 208760. h




How to Cite

Möller M, Höfele P, Reuter L, Tauber FJ, Grießhammer R. How to assess technological developments in basic research? Enabling formative interventions regarding sustainability, ethics, and consumer issues at an early stage. TATuP [Internet]. 2021 Mar. 31 [cited 2024 May 19];30(1):56-62. Available from: