Agent-based modeling and simulation in pandemic management




agent-based modeling, simulation, pandemic management


Mathematical models and computer simulations play a crucial role in the context of the COVID-19 crisis for knowledge about the possible course of the pandemic and for appropriate policy decisions. The paper presents results from an ethnographic study of a government-funded R & D project dealing with agent-based modeling and simulation (ABMS) in the context of pandemic management. Based on the assumption that the use of computer simulations in pandemic management is not only a means to an end for political or epidemiological goals but also plays a significant role in determining which goals and strategies appear politically legitimate, the paper reconstructs how insights into the pandemic are generated in ABMS and specifically in the researched project and made accessible for decision-making.


Adam, David (2020): Special report: The simulations driving the world’s response to COVID-19. In: Nature 580 (7803), S. 316–318. DOI:

Deutsche Gesellschaft für Epidemiologie (2020): 2. Stellungnahme der Deutschen Gesellschaft für Epidemiologie (DGEpi) zur Verbreitung des neuen Coronavirus (SARS-CoV-2). Online verfügbar unter, zuletzt geprüft am 03. 02. 2023

Epstein, Joshua (2009): Modelling to contain pandemics. In: Nature 460 (7256), S. 687. DOI:

Epstein, Joshua; Parker, Jon; Cummings, Derek; Hammond, Ross (2008): Coupled contagion dynamics of fear and disease. Mathematical and computational explorations. In: PloS one 3 (12), S. e3955. DOI:

Frias-Martinez, Enrique; Williamson, Graham; Frias-Martinez, Vanessa (2011): An agent-based model of epidemic spread using human mobility and social network information. In: 2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing, S. 57–64. DOI:

Hälterlein, Jens (2020): Die Simulation der Pandemie: Ein Beitrag zur Reihe „Sicherheit in der Krise“. Online verfügbar unter, zuletzt geprüft am 03. 02. 2023

Ioannidis, John; Cripps, Sally; Tanner, Martin (2022): Forecasting for COVID-19 has failed. In: International Journal of Forecasting 38 (2), S. 423–438. DOI:

Littoz-Monnet, Annabelle (2020): Depoliticising through expertise. The politics of modelling in the governance of COVID-19. Online verfügbar unter, zuletzt geprüft am 03. 02. 2023.

Lorig, Fabian; Johansson, Emil; Davidsson, Paul (2021): Agent-based social simulation of the COVID-19 pandemic. A systematic review. In: Journal of Artificial Societies and Social Simulation 24 (3), 26 S. DOI:

Opitz, Sven (2017): Simulating the world. The digital enactment of pandemics as a mode of global self-observation. In: European Journal of Social Theory 20 (3), S. 392–416. DOI:

Saltelli, Andrea et al. (2020): Five ways to ensure that models serve society. A manifesto. In: Nature 582 (7813), S. 482–484. DOI:

Skitka, Linda; Mosier, Kathleen; Burdick, Mark (1999): Does automation bias decision-making? In: International Journal of Human-Computer Studies 51 (5), S. 991–1006. DOI:

Weyer, Johannes; Roos, Michael (2017): Agentenbasierte Modellierung und Simulation. In: TATuP – Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis 26 (3), S.11–16. DOI:



How to Cite

Hälterlein J. Agent-based modeling and simulation in pandemic management. TATuP [Internet]. 2023 Mar. 23 [cited 2023 Jun. 3];32(1):30-5. Available from: