Modeling sustainable mobility: Impact assessment of policy measures




analytical sociology, agent-based modeling, policy assessment, transportation


Sociologically based models of complex systems can help to estimate the impact of policy measures on individuals and explain the resulting system dynamics. Using the example of the Ruhr region and the mobility of the people living there, the article demonstrates the concept of agent-based modeling, which draws on assumptions from analytical sociology and distinguishes between different types of actors. Simulation experiments conducted as part of the InnaMoRuhr project show significant differences in the behavior of these types, especially in their response to policy interventions. Policymakers should take this into account when planning and designing measures aimed at sustainable transformation.


Adelt, Fabian; Hoffmann, Sebastian (2017): Der Simulator „SimCo“ als Tool der TA. Experimente zur Verkehrssteuerung. In: TATuP – Journal for Technology Assessment in Theory and Practice 26 (3), pp. 37–43. DOI:

Dings, Christiane et al. (2022): Mathematische Modellierung des Verlaufs der SARS-CoV‑2-Pandemie in den deutschen Bundesländern. Saarbrücken: Universität des Saarlandes. Available online at, last accessed on 05. 12. 2022.

Esser, Hartmut (1993): Soziologie. Allgemeine Grundlagen. Frankfurt a. M.: Campus.

Gramelsberger, Gabriele (2015): Computerexperimente. Zum Wandel der Wissenschaft im Zeitalter des Computers. Bielefeld: transcript.

Hedström, Peter; Swedberg, Richard (1996): Social mechanisms. In: Acta Sociologica 39 (3), pp. 281–308. DOI:

Horni, Andreas; Nagel, Kai; Axhausen, Kay (2016): The multi-agent transport simulation MATSim. London: Ubiquity Press.

Kaddoura, Ihab; Laudan, Janek; Ziemke, Dominik; Nagel, Kai (2020): Verkehrsmodellierung für das Ruhrgebiet. In: Heike Proff (ed.): Neue Dimensionen der Mobilität. Wiesbaden: Springer, pp. 361–386. DOI:

Konidari, Popi; Mavrakis, Dimitrios (2007): A multi-criteria evaluation method for climate change mitigation policy instruments. In: Energy Policy 35 (12), pp. 6235–6257. DOI:

Kroneberg, Clemens (2014): Frames, scripts, and variable rationality. An integrative theory of action. In: Gianluca Manzo (ed.): Analytical sociology. Norms, actions, and networks. Hoboken, NJ: Wiley, pp. 97–123. DOI:

Philipp, Marlon; Adelt, Fabian (2018): Optionen der politischen Regulierung des Personenverkehrs. Ergebnisse einer Simulationsstudie. (Soziologisches Arbeitspapier 52/2018). Dortmund: TU Dortmund.

Philipp, Marlon; Adelt, Fabian; Weyer, Johannes (2023): Simulation des Mobilitätsverhaltens und möglicher Transformationspfade (Mobility Report 8/2023). Dortmund: TU Dortmund, in press.

Saam, Nicole; Resch, Michael; Kaminski, Andreas (2019): Simulieren und Entscheiden. Entscheidungsmodellierung, Modellierungsentscheidungen, Entscheidungsunterstützung. Wiesbaden: Springer. DOI:

Van Dam, Koen; Nikolic, Igor; Lukszo, Zofia (eds.) (2013): Agent-based modelling of socio-technical systems. Dordrecht: Springer. DOI:

Velasquez, Mark; Hester, Patrick (2013): An analysis of multi-criteria decision making methods. In: International Journal of Operations Research 10 (2), pp. 56–66. Available online at, last accessed on 10. 01. 2023.

Weyer, Johannes (2019): Die Echtzeitgesellschaft. Wie smarte Technik unser Leben steuert. Frankfurt a. M.: Campus.

Weyer, Johannes (2022): Mobilitätspraktiken und Mobilitätsbedarfe. Ergebnisse einer Befragung von Angehörigen der UA‑Ruhr-Universitäten (Mobility Report 2/2022). Dortmund: TU Dortmund. Available online at, last accessed on 05. 12. 2022.

Weyer, Johannes; Adelt, Fabian; Hoffmann, Sebastian (2019): Governance of transitions. A simulation experiment on urban transportation. In: Diane Payne et al. (eds.): Social simulation for a digital society. Applications and innovations in computational social science. Basel: Springer, pp. 111–120. DOI:

Weyer, Johannes; Adelt, Fabian; Philipp, Marlon (2022): Agent-based modelling of infrastructure systems. In: Jens Gurr, Rolf Parr and Dennis Hardt (eds.): Metropolitan research. Methods and approaches. Bielefeld: transcript, pp. 155–165. DOI:

Weyer, Johannes; Roos, Michael (2017): Agentenbasierte Modellierung und Simulation. Instrument prospektiver Technikfolgenabschätzung. In: TATuP – Journal for Technology Assessment in Theory and Practice 26 (3), pp. 11–16. DOI:

Ziemke, Dominik; Kaddoura, Ihab; Agarwal, Amit (2019): Entwicklung eines regionalen, agentenbasierten Verkehrssimulationsmodells zur Analyse von Mobilitätsszenarien für die Region Ruhr. In: Heike Proff (ed.): Mobilität in Zeiten der Veränderung. Wiesbaden: Springer, pp. 383–410. DOI:




How to Cite

Weyer J, Adelt F, Philipp M. Modeling sustainable mobility: Impact assessment of policy measures. TATuP [Internet]. 2023 Mar. 23 [cited 2023 Jun. 9];32(1):56-62. Available from: