Handling the hype: Implications of AI hype for public interest tech projects

Authors

DOI:

https://doi.org/10.14512/tatup.32.3.34

Keywords:

public interest tech, AI, hype, sociotechnical change

Abstract

Based on theories of expectations of technology and empirical data from expert interviews and case studies, this research article explores how actors in the field of public interest technologies relate to and within the dynamics of AI hype. On an affirmative note, practitioners and experts see the potential that AI hype can serve their own purposes, e.g., through improved funding and support structures. At the same time, public interest tech actors distance themselves from the dynamics of AI hype and criticize it explicitly. Finally, the article discusses how engagement with AI hype and its impact affects society as a whole and, more specifically, society’s ability to develop and use technologies in response to societal problems.

References

Abbas, Roba; Hamdoun, Salah; Abu-Ghazaleh, Jumana; Chhetri, Netra; Chhetri, Nalini; Michael, Katina (2021): Co-designing the future with public interest technology. In: IEEE Technology and Society Magazine 40 (3), pp. 10–15. https://doi.org/10.1109/MTS.2021.3101825

Bareis, Jascha; Katzenbach, Christian (2022): Talking AI into being. The narratives and imaginaries of national AI strategies and their performative politics. In: Science, Technology & Human Values 47 (5), pp. 855–881. https://doi.org/10.1177/01622439211030007

Bender, Emily; Gebru, Timnit; McMillan-Major, Angelina; Shmitchell, Shmargaret (2021): On the dangers of stochastic parrots. Can language models be too big? ???? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21), pp. 610–623. https://doi.org/10.1145/3442188.3445922

Borup, Mads; Brown, Nik; Konrad, Kornelia; Van Lente, Harro (2006): The sociology of expectations in science and technology. In: Technology Analysis & Strategic Management 18 (3–4), pp. 285–298. https://doi.org/10.1080/09537320600777002

Buolamwini, Joy; Gebru, Timnit (2018): Gender shades. Intersectional accuracy disparities in commercial gender classification. In: Proceedings of Machine Learning Research 81, pp. 77–91. Available online at https://proceedings.mlr.press/v81/buolamwini18a.html, last accessed on 31. 10. 2023.

Dedehayir, Ozgur; Steinert, Martin (2016): The hype cycle model. A review and future directions. In: Technological Forecasting and Social Change 108, pp. 28–41. https://doi.org/10.1016/j.techfore.2016.04.005

EAIF – European Artificial Intelligence Fund (2021): How to fund public interest work around AI in Europe? Brussels: European Artificial Intelligence & Society Fund. Available online at https://europeanaifund.org/wp-content/uploads/2021/12/How-to-fund-public-interest-work-around-AI-in-Europe-updated.pdf, last accessed on 31. 10. 2023.

European Commission (2020): New EU financing instrument of up to € 150 million to support European artificial intelligence companies. Available online at https://digital-strategy.ec.europa.eu/en/news/new-eu-financing-instrument-eu150-million-support-european-artificial-intelligence-companies, last accessed on 31. 10. 2023.

Fenn, Jackie; Raskino, Mark (2008): Mastering the hype cycle. How to choose the right innovation at the right time. Cambridge, MA: Harvard Business Press.

Gläser, Jochen; Laudel, Grit (2010): Experteninterviews und qualitative Inhaltsanalyse. Wiesbaden: Springer VS.

Helfferich, Cornelia (2019): Leitfaden- und Experteninterviews. In: Nina Baur and Jörg Blasius (eds.): Handbuch Methoden der empirischen Sozialforschung. Wiesbaden: Springer, pp. 669–686. https://doi.org/10.1007/978-3-658-21308-4_44

Kaltheuner, Frederike; Amironesei, Razvan (eds.) (2021): Fake AI. Manchester: Meatspace Press.

Köstler, Lea; Ossewaarde, Ringo (2022): The making of AI society. AI futures frames in German political and media discourses. In: AI & Society 37 (1), pp. 249–263. https://doi.org/10.1007/s00146-021-01161-9

Kuckartz, Udo (2018): Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung. Weinheim: Beltz Juventa.

Maslej, Nestor et al. (eds.) (2023): The AI index 2023 annual report. Stanford, CA: Stanford University. Available online at https://aiindex.stanford.edu/report/, last accessed on 31. 10. 2023.

McGuinness, Tara; Schank, Hana (2021): Power to the public. The promise of public interest technology. Princeton, NJ: Princeton University Press.

Rubin, Herbert; Rubin, Irene (2012): Qualitative interviewing. The art of hearing data. Thousand Oaks, CA: Sage Publications.

Slota, Stephen et al. (2020): Good systems, bad data? Interpretations of AI hype and failures. In: Proceedings of the Association for Information Science and Technology 57 (1), p. e275. https://doi.org/10.1002/pra2.275

Sovacool, Benjamin; Hess, David (2017): Ordering theories. Typologies and conceptual frameworks for sociotechnical change. In: Social Studies of Science 47 (5), pp. 703–750. https://doi.org/10.1177/0306312717709363

Stieler, Wolfgang (2023). Welche Ideologie hinter Geoffrey Hintons Warnungen steckt. In: Heise Online, 05. 05. 2023. Available online at https://www.heise.de/meinung/Welche-Ideologie-hinter-Geoffrey-Hintons-Warnungen-steckt-8988646.html, last accessed on 31. 10. 2023.

Toosi, Amirhosein; Bottino, Andrea; Saboury, Babak; Siegel, Eliot; Rahmim, Arman (2021): A brief history of AI. How to prevent another winter (A critical review). In: PET Clinics 16 (4), pp. 449–469. https://doi.org/10.1016/j.cpet.2021.07.001

Ulnicane, Inga; Knight, William; Leach, Tonii; Stahl, Bernd; Wanjiku, Winter-Gladys (2021): Framing governance for a contested emerging technology. Insights from AI policy. In: Policy and Society 40 (2), pp. 158–177. https://doi.org/10.1080/14494035.2020.1855800

Van Lente, Harro; Spitters, Charlotte; Peine, Alexander (2013): Comparing technological hype cycles. Towards a theory. In: Technological Forecasting and Social Change 80 (8), pp. 1615–1628. https://doi.org/10.1016/j.techfore.2012.12.004

Vicsek, Lilla (2021): Artificial intelligence and the future of work. Lessons from the sociology of expectations. In: International Journal of Sociology and Social Policy 41 (7/8), pp. 842–861. https://doi.org/10.1108/IJSSP-05-2020-0174

Züger, Theresa; Fassbender, Judith; Kuper, Freia; Nenno, Sami; Katzy-Reinshagen, Anna; Kühnlein, Irina (2022): Civic Coding. Grundlagen und empirische Einblicke zur Unterstützung gemeinwohlorientierter KI. Berlin: Civic Coding Initiative. Available online at https://www.conpolicy.de/aktuell/civic-coding-grundlagen-und-empirische-einblicke-zur-unterstuetzung-gemeinwohlorientierter-ki/, last accessed on 31. 10. 2023.

Downloads

Published

2023-12-13

How to Cite

1.
Handling the hype: Implications of AI hype for public interest tech projects. TATuP [Internet]. 2023 Dec. 13 [cited 2025 Jan. 16];32(3):34-40. Available from: https://www.tatup.de/index.php/tatup/article/view/7080