Modeling for policy and technology assessment: Challenges from computerbased simulations and artificial intelligence

Authors

DOI:

https://doi.org/10.14512/tatup.32.1.11

Keywords:

computer-based modeling, technology assessment, artificial intelligence, decision-making, prognostic

Abstract

Modeling for policy has become an integral part of policy making and technology assessment. This became particularly evident to the general public when, during the COVID-19 pandemic, forecasts of infection dynamics based on computer simulations were used to evaluate and justify policy containment measures. Computer models are also playing an increasing role in technology assessment (TA). Computer simulations are used to explore possible futures related to specific technologies, for example, in the area of energy systems analysis. Artificial intelligence (AI) models are also becoming increasingly important. The results is a mix of methods where computer simulations and machine learning converge, posing particular challenges and opening up new research questions. This Special topic brings together case studies from different fields to explore the current state of computational models in general and AI methods in particular for policy and TA.

References

Alami, Hassane; Lehoux, Pascale; Auclair, Yannick (2020): Artificial intelligence and health technology assessment. Anticipating a new level of complexity. In: Journal of Medical Internet Research 22 (7), p. e17707. https://doi.org/10.2196/17707 DOI: https://doi.org/10.2196/17707

Cheramie, Kristi (2011): The scale of nature. Modeling the Mississippi River. In: Places Journal 133 (4), pp.724–739. https://doi.org/10.22269/110321 DOI: https://doi.org/10.22269/110321

Colombo, Camilla; Diamanti, Mirko (2015): The smallpox vaccine. The dispute between Bernoulli and d’Alembert and the calculus of probabilities. In: Lettera Matematica 2 (4), pp.185–192. https://doi.org/10.1007/s40329-015-0073-5 DOI: https://doi.org/10.1007/s40329-015-0073-5

Dietz, Klaus; Heesterbeek, Hans (2002): Daniel Bernoulli’s epidemiological model revisited. In: Mathematical Biosciences 180 (1–2), pp.1–21. https://doi.org/10.1016/S0025-5564(02)00122-0 DOI: https://doi.org/10.1016/S0025-5564(02)00122-0

Davenport, Thomas; Kalakota, Ravi (2019): The potential for artificial intelligence in healthcare. In: Future Healthcare Journal 6 (2), pp. 94–98. https://doi.org/10.7861/futurehosp.6-2-94 DOI: https://doi.org/10.7861/futurehosp.6-2-94

European Commission (2021): European Green Deal. Commission proposes transformation of EU economy and society to meet climate ambitions. Press Release. Brussels: Press material from the Commission Spokesperson’s Service. Available online at https://ec.europa.eu/commission/presscorner/detail/en/ip_21_3541, last accessed on 02. 02. 2023.

Farman, Joseph; Gardiner, Brian; Shanklin, Jon (1985): Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. In: Nature 315 (6016), pp. 207–210. https://doi.org/10.1038/315207a0 DOI: https://doi.org/10.1038/315207a0

Forrester, Jay (1971): World dynamics. Cambridge, MA: Wright Allen Press

Fuhrmann, Martin (2001): Die Politik der Volksvermehrung und Menschenveredelung. Der Bevölkerungsdiskurs in der politischen und ökonomischen Theorie der deutschen Aufklärung. In: Aufklärung 13, pp. 243–282

Gelfert, Axel (2016): How to do science with models. A philosophical primer. Dordrecht: Springer. https://doi.org/10.1007/978-3-31927954-1

Goemans, Tom; Visser, Tjebbe (1987): The Delta Project. The Netherlands experience with a megaproject for flood protection. In:Technology in Society 9 (1), pp. 97–111. https://doi.org/10.1016/0160-791X(87)90034-0 DOI: https://doi.org/10.1016/0160-791X(87)90034-0

Gradel, Simon; Aigner, Benedikt; Stumpf, Eike (2022): Model-based safety assessment for conceptual aircraft systems design. In: CEAS Aeronautical Journal 13 (1), pp. 281–294. https://doi.org/10.1007/s13272-021-00562-2 DOI: https://doi.org/10.1007/s13272-021-00562-2

Greenberger, Martin; Crenson, Matthew; Crissey, Brian (1976): Models in the policyprocess. Public decision making in the computer era. New York: Russell Sage Foundation

Grüne-Yanoff, Till (2017): Seven problems for massive simulation models. In: Michael Resch, Andreas Kaminski and Petra Gehring (eds.): The science and art of simulation. Berlin: Springer, pp. 85–101. https://doi.org/10.1007/978-3-319-55762-5_7 DOI: https://doi.org/10.1007/978-3-319-55762-5_7

Grunwald, Armin (2022): Model-based anticipation in technology assessment. The hermeneutic approach for opening up a critical perspective. Paper presented at the 4th International Conference on Anticipation (ANTICIPATION2022), Tempe, AZ, USA, 16.11. 2022 to 18.11. 2022.

Helmer, Olaf (1967): Analysis of the future. The Delphi method. Santa Monica: RAND Corporation

Heymann, Matthias; Gramelsberger, Gabriele; Mahony Martin (eds.) (2017): Cultures of prediction in atmospheric and climate science. Epistemic and cultural shifts in computer-based modeling and simulation. London: Routledge. https://doi.org/10.4324/9781315406282 DOI: https://doi.org/10.4324/9781315406282

Kaminski, Andreas (2018): Der Erfolg der Modellierung und das Ende der Modelle. Epistemische Opazität in der Computersimulation. In: Andreas Brenneis, Oliver Honer, Sina Keesser, Annette Ripper and Silke Vetter-Schultheiß

(eds.): Technik – Macht – Raum. Das Topologische Manifest im Kontext interdisziplinärer Studien. Wiesbaden: Springer, pp. 317–333. https://doi.org/10.1007/978-3-658-15154-6_16 DOI: https://doi.org/10.1007/978-3-658-15154-6_16

Kingkaew, Pritaporn et al. (2022): A model-based study to estimate the health and economic impact of health technology assessment in Thailand. In: International Journal of Technology Assessment in Health Care 38 (1), p. e45. https://doi.org/10.1017/S0266462322000277 DOI: https://doi.org/10.1017/S0266462322000277

Klüsener, Sebastian et al. (2020): Forecasting intensive care unit demand during the COVID-19 pandemic. A spatial age-structured microsimulation model. Preprint, In: medRxiv – the preprint server for health sciences, pp.1–41 DOI: https://doi.org/10.1101/2020.12.23.20248761

Kraemer, Kenneth; King, John (1986): OR Practice-computer-based models for policy making. Uses and impacts in the U. S. Federal Government. In: Operations Research 34 (4), pp. 501–512. https://doi.org/10.1287/opre.34.4.501 DOI: https://doi.org/10.1287/opre.34.4.501

Mansnerus, Erika (2015): Modelling in public health research. How mathematical techniques keep us healthy. New York: Palgrave Macmillan.

Meadows, Donella; Meadows, Dennis; Randers, Jørgen; Behrens, William (1972): The limits to growth. Washington: Potomac Associates Books.

Miller, Louis; Fisher, Gene; Walker, Warren; Wolf Jr., Charles (1988): Operations research and policy analysis at RAND, 1968–1988. In: OR/MS Today 15 (6), pp. 20–25. https://doi.org/10.7249/N2937 DOI: https://doi.org/10.7249/N2937

Morgan, Mary; Morrison, Margaret (eds.) (1999): Models as mediators. Perspectives on natural and social science. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511660108 DOI: https://doi.org/10.1017/CBO9780511660108

Morse, Philip; Kimball, George (1951): Methods of operations research. New York: Technology Press. https://doi.org/10.1063/1.3067068 DOI: https://doi.org/10.1063/1.3067068

Scharpf, Fritz (1973): Planung als politischer Prozess. Aufsätze zur Theorie der planenden Demokratie. Frankfurt a.M.: Suhrkamp. DOI: https://doi.org/10.1007/978-3-322-86105-4_9

Scheer, Dirk (2013): Computersimulationen in politischen Entscheidungsprozessen. Zur Politikrelevanz von Simulationswissen am Beispiel der CO2-Speicherung. Wiesbaden: Springer. DOI: https://doi.org/10.1007/978-3-658-03394-1

Scheer, Dirk (2017): Between knowledge and action. Conceptualizing scientific simulation and policy-making. In: Michael Resch, Andreas Kaminski and Petra Gehring (eds.): The science and art of simulation I. Exploring, understanding, knowing. Cham: Springer, pp.103–118. https://doi.org/10.1007/978-3-319-55762-5_8 DOI: https://doi.org/10.1007/978-3-319-55762-5_8

Scheer, Dirk; Class, Holger; Flemisch, Bernd (2021): Introduction. In: Subsurface environmental modelling between science and policy. Cham: Springer, pp.1–12. https://doi.org/10.1007/978-3-030-51178-4_1 DOI: https://doi.org/10.1007/978-3-030-51178-4_1

Seefried, Elke (2014): Steering the future. The emergence of “Western” futures research and its production of expertise, 1950s to early 1970s. In: European Journal of Futures Research 2 (1), pp. 291–12. https://doi.org/10.1007/s40309-013-0029-y DOI: https://doi.org/10.1007/s40309-013-0029-y

Solomon, Susan (2019): The discovery of the Antarctic ozone hole. In: Nature 575 (7781), pp. 46–47. https://doi.org/10.1038/d41586-019-02837-5 DOI: https://doi.org/10.1038/d41586-019-02837-5

Tachkov, Konstantin et al. (2022): Barriers to use artificial intelligence methodologies in health technology assessment in Central and East European countries. In: Frontiers in Public Health 10, p. 921 226. https://doi.org/10.3389/fpubh.2022.921226 DOI: https://doi.org/10.3389/fpubh.2022.921226

van Beek, Lisette; Hajer, Maarten; Pelzer, Peter; van Vuuren, Detlef; Cassen, Christoph (2020): Anticipating futures through models. The rise of Integrated Assessment Modeling in the climate science-policy interface since 1970. In: Global Environmental Change 65, p.102 191. https://doi.org/10.1016/j.gloenvcha.2020.102191 DOI: https://doi.org/10.1016/j.gloenvcha.2020.102191

Downloads

Published

23.03.2023

How to Cite

1.
Kaminski A, Gramelsberger G, Scheer D. Modeling for policy and technology assessment: Challenges from computerbased simulations and artificial intelligence. TATuP [Internet]. 2023 Mar. 23 [cited 2024 Sep. 8];32(1):11-7. Available from: https://www.tatup.de/index.php/tatup/article/view/7033

Most read articles by the same author(s)