Modeling for policy and technology assessment: Challenges from computerbased simulations and artificial intelligence




computer-based modeling, technology assessment, artificial intelligence, decision-making, prognostic


Modeling for policy has become an integral part of policy making and technology assessment. This became particularly evident to the general public when, during the COVID-19 pandemic, forecasts of infection dynamics based on computer simulations were used to evaluate and justify policy containment measures. Computer models are also playing an increasing role in technology assessment (TA). Computer simulations are used to explore possible futures related to specific technologies, for example, in the area of energy systems analysis. Artificial intelligence (AI) models are also becoming increasingly important. The results is a mix of methods where computer simulations and machine learning converge, posing particular challenges and opening up new research questions. This Special topic brings together case studies from different fields to explore the current state of computational models in general and AI methods in particular for policy and TA.


Alami, Hassane; Lehoux, Pascale; Auclair, Yannick (2020): Artificial intelligence and health technology assessment. Anticipating a new level of complexity. In: Journal of Medical Internet Research 22 (7), p. e17707. DOI:

Cheramie, Kristi (2011): The scale of nature. Modeling the Mississippi River. In: Places Journal 133 (4), pp.724–739. DOI:

Colombo, Camilla; Diamanti, Mirko (2015): The smallpox vaccine. The dispute between Bernoulli and d’Alembert and the calculus of probabilities. In: Lettera Matematica 2 (4), pp.185–192. DOI:

Dietz, Klaus; Heesterbeek, Hans (2002): Daniel Bernoulli’s epidemiological model revisited. In: Mathematical Biosciences 180 (1–2), pp.1–21. DOI:

Davenport, Thomas; Kalakota, Ravi (2019): The potential for artificial intelligence in healthcare. In: Future Healthcare Journal 6 (2), pp. 94–98. DOI:

European Commission (2021): European Green Deal. Commission proposes transformation of EU economy and society to meet climate ambitions. Press Release. Brussels: Press material from the Commission Spokesperson’s Service. Available online at, last accessed on 02. 02. 2023.

Farman, Joseph; Gardiner, Brian; Shanklin, Jon (1985): Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. In: Nature 315 (6016), pp. 207–210. DOI:

Forrester, Jay (1971): World dynamics. Cambridge, MA: Wright Allen Press

Fuhrmann, Martin (2001): Die Politik der Volksvermehrung und Menschenveredelung. Der Bevölkerungsdiskurs in der politischen und ökonomischen Theorie der deutschen Aufklärung. In: Aufklärung 13, pp. 243–282

Gelfert, Axel (2016): How to do science with models. A philosophical primer. Dordrecht: Springer.

Goemans, Tom; Visser, Tjebbe (1987): The Delta Project. The Netherlands experience with a megaproject for flood protection. In:Technology in Society 9 (1), pp. 97–111. DOI:

Gradel, Simon; Aigner, Benedikt; Stumpf, Eike (2022): Model-based safety assessment for conceptual aircraft systems design. In: CEAS Aeronautical Journal 13 (1), pp. 281–294. DOI:

Greenberger, Martin; Crenson, Matthew; Crissey, Brian (1976): Models in the policyprocess. Public decision making in the computer era. New York: Russell Sage Foundation

Grüne-Yanoff, Till (2017): Seven problems for massive simulation models. In: Michael Resch, Andreas Kaminski and Petra Gehring (eds.): The science and art of simulation. Berlin: Springer, pp. 85–101. DOI:

Grunwald, Armin (2022): Model-based anticipation in technology assessment. The hermeneutic approach for opening up a critical perspective. Paper presented at the 4th International Conference on Anticipation (ANTICIPATION2022), Tempe, AZ, USA, 16.11. 2022 to 18.11. 2022.

Helmer, Olaf (1967): Analysis of the future. The Delphi method. Santa Monica: RAND Corporation

Heymann, Matthias; Gramelsberger, Gabriele; Mahony Martin (eds.) (2017): Cultures of prediction in atmospheric and climate science. Epistemic and cultural shifts in computer-based modeling and simulation. London: Routledge. DOI:

Kaminski, Andreas (2018): Der Erfolg der Modellierung und das Ende der Modelle. Epistemische Opazität in der Computersimulation. In: Andreas Brenneis, Oliver Honer, Sina Keesser, Annette Ripper and Silke Vetter-Schultheiß

(eds.): Technik – Macht – Raum. Das Topologische Manifest im Kontext interdisziplinärer Studien. Wiesbaden: Springer, pp. 317–333. DOI:

Kingkaew, Pritaporn et al. (2022): A model-based study to estimate the health and economic impact of health technology assessment in Thailand. In: International Journal of Technology Assessment in Health Care 38 (1), p. e45. DOI:

Klüsener, Sebastian et al. (2020): Forecasting intensive care unit demand during the COVID-19 pandemic. A spatial age-structured microsimulation model. Preprint, In: medRxiv – the preprint server for health sciences, pp.1–41 DOI:

Kraemer, Kenneth; King, John (1986): OR Practice-computer-based models for policy making. Uses and impacts in the U. S. Federal Government. In: Operations Research 34 (4), pp. 501–512. DOI:

Mansnerus, Erika (2015): Modelling in public health research. How mathematical techniques keep us healthy. New York: Palgrave Macmillan.

Meadows, Donella; Meadows, Dennis; Randers, Jørgen; Behrens, William (1972): The limits to growth. Washington: Potomac Associates Books.

Miller, Louis; Fisher, Gene; Walker, Warren; Wolf Jr., Charles (1988): Operations research and policy analysis at RAND, 1968–1988. In: OR/MS Today 15 (6), pp. 20–25. DOI:

Morgan, Mary; Morrison, Margaret (eds.) (1999): Models as mediators. Perspectives on natural and social science. Cambridge, UK: Cambridge University Press. DOI:

Morse, Philip; Kimball, George (1951): Methods of operations research. New York: Technology Press. DOI:

Scharpf, Fritz (1973): Planung als politischer Prozess. Aufsätze zur Theorie der planenden Demokratie. Frankfurt a.M.: Suhrkamp. DOI:

Scheer, Dirk (2013): Computersimulationen in politischen Entscheidungsprozessen. Zur Politikrelevanz von Simulationswissen am Beispiel der CO2-Speicherung. Wiesbaden: Springer. DOI:

Scheer, Dirk (2017): Between knowledge and action. Conceptualizing scientific simulation and policy-making. In: Michael Resch, Andreas Kaminski and Petra Gehring (eds.): The science and art of simulation I. Exploring, understanding, knowing. Cham: Springer, pp.103–118. DOI:

Scheer, Dirk; Class, Holger; Flemisch, Bernd (2021): Introduction. In: Subsurface environmental modelling between science and policy. Cham: Springer, pp.1–12. DOI:

Seefried, Elke (2014): Steering the future. The emergence of “Western” futures research and its production of expertise, 1950s to early 1970s. In: European Journal of Futures Research 2 (1), pp. 291–12. DOI:

Solomon, Susan (2019): The discovery of the Antarctic ozone hole. In: Nature 575 (7781), pp. 46–47. DOI:

Tachkov, Konstantin et al. (2022): Barriers to use artificial intelligence methodologies in health technology assessment in Central and East European countries. In: Frontiers in Public Health 10, p. 921 226. DOI:

van Beek, Lisette; Hajer, Maarten; Pelzer, Peter; van Vuuren, Detlef; Cassen, Christoph (2020): Anticipating futures through models. The rise of Integrated Assessment Modeling in the climate science-policy interface since 1970. In: Global Environmental Change 65, p.102 191. DOI:




How to Cite

Kaminski A, Gramelsberger G, Scheer D. Modeling for policy and technology assessment: Challenges from computerbased simulations and artificial intelligence. TATuP [Internet]. 2023 Mar. 23 [cited 2024 May 28];32(1):11-7. Available from:

Most read articles by the same author(s)