Borderline decisions?: Lack of justification for automatic deception detection at EU borders

Authors

DOI:

https://doi.org/10.14512/tatup.33.1.34

Keywords:

automatic deception detection, machine learning, emotion recognition, border control, trust

Abstract

Between 2016 and 2019, the European Union funded the development and testing of a system called “iBorderCtrl”, which aims to help detect illegal migration. Part of iBorderCtrl is an automatic deception detection system (ADDS): Using artificial intelligence, ADDS is designed to calculate the probability of deception by analyzing subtle facial expressions to support the decision-making of border guards. This text explains the operating principle of ADDS and its theoretical foundations. Against this background, possible deficits in the justification of the use of this system are pointed out. Finally, based on empirical findings, potential societal ramifications of an unjustified use of ADDS are discussed.

References

Ammicht Quinn, Regina (2015): Trust generating security generating trust. An ethical perspective on a secularized dicourse. In: Behemoth. A Journal on Civilisation 8 (1), pp. 109–125. https://doi.org/10.6094/behemoth.2015.8.1.855

Andalibi, Nazanin; Buss, Justin (2020): The human in emotion recognition on social media. Attitudes, outcomes, risks. In: Regina Bernhaupt et al. (eds.): Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). New York, NY: Association for Computing Machinery, pp. 1–16. https://doi.org/10.1145/3313831.3376680 DOI: https://doi.org/10.1145/3313831.3376680

Araujo, Theo; Helberger, Natali; Kruikemeier, Sanne; de Vreese, Claes (2020): In AI we trust? Perceptions about automated decision-making by artificial intelligence. In: AI & Society 35 (3), pp. 611–623. https://doi.org/10.1007/s00146-019-00931-w DOI: https://doi.org/10.1007/s00146-019-00931-w

Aysolmaz, Banu; Müller, Rudolf; Meacham, Darian (2023): The public perceptions of algorithmic decision-making systems. Results from a large-scale survey. In: Telematics and Informatics 79, p. 101954. https://doi.org/10.1016/j.tele.2023.101954 DOI: https://doi.org/10.1016/j.tele.2023.101954

Bacchini, Fabio; Lorusso, Ludovica (2019): Race, again. How face recognition technology reinforces racial discrimination. In: Journal of Information, Communication and Ethics in Society 17 (3), pp. 321–335. https://doi.org/10.1108/jices-05-2018-0050 DOI: https://doi.org/10.1108/JICES-05-2018-0050

Beduschi, Ana (2020): International migration management in the age of artificial intelligence. Migration Studies 9 (3), pp. 576–596. https://doi.org/10.1093/migration/mnaa003 DOI: https://doi.org/10.1093/migration/mnaa003

Bond, Charles; DePaulo, Bella (2006): Accuracy of deception judgments. In: Personality and Social Psychology Review 10 (3), pp. 214–234. https://doi.org/10.1207/s15327957pspr1003_2 DOI: https://doi.org/10.1207/s15327957pspr1003_2

Bradford, Ben; Yesberg, Julia; Jackson, Jonathan; Dawson, Paul (2020): Live facial recognition. Trust and legitimacy as predictors of public support for police use of new technology. In: The British Journal of Criminology 60 (6), pp. 1502–1522. https://doi.org/10.1093/bjc/azaa032 DOI: https://doi.org/10.31235/osf.io/n3pwa

Brandner, Lou; Hirsbrunner Simon (2023). Algorithmic fairness in police investigative work. Ethical analysis of machine learning methods for facial recognition. In: TATuP – Journal for Technology Assessment in Theory and Practice 32 (1), pp. 24–29. https://doi.org/10.14512/tatup.32.1.24 DOI: https://doi.org/10.14512/tatup.32.1.24

BrusselsReport.eu (2022): Poll reveals great unease among Europeans about migration policy. In: Brussels report, 01. 02. 2022. Available online at https://www.brusselsreport.eu/2022/02/01/poll-reveals-great-unease-among-europeans-about-migration-policy/, last accessed 26. 01. 2024.

Büscher, Christian; Sumpf, Patrick (2015): “Trust” and “confidence” as socio-technical problems in the transformation of energy systems. In: Sustainability and Society 5 (34), pp. 1–13. https://doi.org/10.1186/s13705-015-0063-7 DOI: https://doi.org/10.1186/s13705-015-0063-7

Chong, Leah; Zhang, Guanglu; Goucher-Lambert, Kosa; Kotovsky, Kenneth; Cagan, Jonathan (2022): Human confidence in artificial intelligence and in themselves. The evolution and impact of confidence on adoption of AI advice. In: Computers in Human Behavior 127, p. 107018. https://doi.org/10.1016/j.chb.2021.107018 DOI: https://doi.org/10.1016/j.chb.2021.107018

Devos, Thierry; Spini, Dario; Schwartz, Shalom (2002): Conflicts among human values and trust in institutions. In: The British Journal of Social Psychology 41, pp. 481–494. https://doi.org/10.1348/014466602321149849 DOI: https://doi.org/10.1348/014466602321149849

Dumbrava, Costica (2021): Artificial intelligence at EU borders. Overview of applications and key issues. Brussels: European Parliamentary Research Service. Available online at https://www.europarl.europa.eu/thinktank/en/document/EPRS_IDA(2021)690706, last accessed on 26. 01. 2024.

Ekman Paul (1985): Telling lies. Clues to deceit in the marketplace, politics and marriage. New York, NY: W. W. Norton and Company.

Ekman, Paul (2016): What scientists who study emotion agree about. In: Perspectives on Psychological Science 11 (1), pp. 31–34. https://doi.org/10.1177/1745691615596992 DOI: https://doi.org/10.1177/1745691615596992

Elfenbein, Hillary; Ambady, Nalini (2002): On the universality and cultural specificity of emotion recognition. A meta-analysis. In: Psychological Bulletin 128 (2), pp. 203–235. https://doi.org/10.1037/0033-2909.128.2.203 DOI: https://doi.org/10.1037//0033-2909.128.2.203

Ezzeddine, Yasmine; Bayerl, Petra; Gibson, Helen (2023): Safety, privacy, or both. Evaluating citizens’ perspectives around artificial intelligence use by police forces. In: Policing and Society 33 (7), pp. 861–876. https://doi.org/10.1080/10439463.2023.2211813 DOI: https://doi.org/10.1080/10439463.2023.2211813

Feldman Barrett, Lisa; Adolphs, Ralph; Marsella, Stacy; Martinez, Aleix; Pollak, Seth (2019): Emotional expressions reconsidered. Challenges to inferring emotion from human facial movements. In: Psychological Science in the Public Interest 20 (1), pp. 1–68. https://doi.org/10.1177/1529100619832930 DOI: https://doi.org/10.1177/1529100619832930

iBorderCtrl (2018): D7.6 Yearly communication report including communication material. Available online at https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5be014692&appId=PPGMS, last accessed on 26. 01. 2024.

iBorderCtrl (2023): Related projects. Available online at https://web.archive.org/web/20211203233051/https://www.iborderctrl.eu/Related-Projects, last accessed on 26. 01. 2024.

Gillespie, Nicole; Lockey, Steven; Curtis, Caitlin; Pool, Javad; Akbari, Ali (2023): Trust in artificial intelligence. A global study. Brisbane: University of Queensland and KPMG Australia. https://doi.org/10.14264/00d3c94 DOI: https://doi.org/10.14264/00d3c94

Grill, Gabriel; Andalibi, Nazanin (2022): Attitudes and folk theories of data subjects on transparency and accuracy in emotion recognition. In: Proceedings of the 2022 ACM on Human-Computer Interaction 6 (CSCW1), pp. 1–35. https://doi.org/10.1145/3512925 DOI: https://doi.org/10.1145/3512925

Helm, Paula; Hagendorff, Thilo (2021): Beyond the prediction paradigm. Challenges for AI in the struggle against organized crime. In: Law and Contemporary Problems 84 (3), pp. 1–17. Available online at https://scholarship.law.duke.edu/lcp/vol84/iss3/2, last accessed on 26. 01. 2024.

Hobson, Zoë; Yesberg, Julia; Bradford, Ben; Jackson, Jonathan (2023): Artificial fairness? Trust in algorithmic police decision-making. In: Journal of Experimental Criminology 19 (1), pp. 165–189. https://doi.org/10.1007/s11292-021-09484-9 DOI: https://doi.org/10.1007/s11292-021-09484-9

Kaminski, Andreas (2019): Begriffe in Modellen. Die Modellierung von Vertrauen in Computersimulation und maschinellem Lernen im Spiegel der Theoriegeschichte des Vertrauens. In: Nicole Saam, Michael Resch and Andreas Kaminski (eds.): Simulieren und Entscheiden. Wiesbaden: Springer VS, pp. 173–197. https://doi.org/10.1007/978-3-658-26042-2 DOI: https://doi.org/10.1007/978-3-658-26042-2_7

Malgieri, Gianclaudio (2020): “Just” algorithms. AI justification (beyond explanation) in the GDPR. In: Gianclaudio Malgieri Blog, 14. 12. 2020. Available online at www.gianclaudiomalgieri.eu/2020/12/14/just-algorithms/, last accessed on 26. 01. 2024.

O’Shea, James; Crockett, Keeley; Khan, Wasiq; Kindynis, Philippos; Antoniades, Athos; Boultadakis, Georgios (2018): Intelligent deception detection through machine based interviewing. In: Proceedings of the International Joint Conference on Neural Networks 2018. New York, NY: Institute of Electrical and Electronics Engineers, pp. 1–8. https://doi.org/10.1109/IJCNN.2018.8489392 DOI: https://doi.org/10.1109/IJCNN.2018.8489392

Pfister, Sabrina (2020): Vertrauen in die Polizei. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-658-35425-1 DOI: https://doi.org/10.1007/978-3-658-35425-1

Podoletz, Lena (2023): We have to talk about emotional AI and crime. In: AI & Society 38 (3), pp. 1067–1082. https://doi.org/10.1007/s00146-022-01435-w DOI: https://doi.org/10.1007/s00146-022-01435-w

Porter, Stephen; Woodworth, Mike; Birt, Angela (2000): Truth, lies, and videotape. An investigation of the ability of federal parole officers to detect deception. In: Law and Human Behavior 24 (6), pp. 643–658. https://doi.org/10.1023/a:1005500219657 DOI: https://doi.org/10.1023/A:1005500219657

Reinhardt, Karoline (2023): Trust and trustworthiness in AI ethics. In: AI Ethics 3 (3), pp. 735–744. https://doi.org/10.1007/s43681-022-00200-5 DOI: https://doi.org/10.1007/s43681-022-00200-5

Rhue, Lauren (2018): Racial influence on automated perceptions of emotions. In: SSRN Journal. https://dx.doi.org/10.2139/ssrn.3281765 DOI: https://doi.org/10.2139/ssrn.3281765

Rothwell, Janet; Bandar, Zuhair; O’Shea, James; McLean, David (2006): Silent Talker. A new computer-based system for the analysis of facial cues to deception. In: Applied Cognitive Psychology 20 (6), pp. 757–777. https://doi.org/10.1002/acp.1204 DOI: https://doi.org/10.1002/acp.1204

Sánchez-Monedero, Javier; Dencik, Lina (2022): The politics of deceptive borders. ‘Biomarkers of deceit’ and the case of iBorderCtrl. In: Information, Communication & Society 25 (3), pp. 413–430. https://doi.org/10.1080/1369118X.2020.1792530 DOI: https://doi.org/10.1080/1369118X.2020.1792530

Selbst, Andrew (2017): Disparate impact in big data policing. In: Georgia Law Review 52 (1), pp. 109–195. http://dx.doi.org/10.2139/ssrn.2819182 DOI: https://doi.org/10.2139/ssrn.2819182

Starke, Christoph; Baleis, Janine; Keller, Birte; Marcinkowski, Frank (2022): Fairness perceptions of algorithmic decision-making. A systematic review of the empirical literature. In: Big Data & Society 9 (2), pp. 1–16. https://doi.org/10.1177/20539517221115189 DOI: https://doi.org/10.1177/20539517221115189

Varghese, Ashwini; Cherian, Jacob; Kizhakkethottam, Jubilant (2015): Overview on emotion recognition system. In: Proceedings of the 2015 International Conference on Soft-Computing and Networks Security (ICSNS). Coimbatore: IEEE Xplore, pp. 1–5. https://doi.org/10.1109/ICSNS.2015.7292443 DOI: https://doi.org/10.1109/ICSNS.2015.7292443

Weydner-Volkmann, Sebastian (2021): Technikvertrauen. In: TATuP – Journal for Technology Assessment in Theory and Practice 30 (2), pp. 53–59. https://doi.org/10.14512/tatup.30.2.53 DOI: https://doi.org/10.14512/tatup.30.2.53

Whittaker, Meredith et al. (2018): AI now report 2018. New York, NY: AI Now Institute. Available online at https://ec.europa.eu/futurium/en/system/files/ged/ai_now_2018_report.pdf, last accessed on 26. 01. 2024.

Zhang, Liangfei; Arandjelović, Ognjen (2021): Review of automatic microexpression recognition in the past decade. In: Machine Learning and Knowledge Extraction 3 (2), pp. 414–434. https://doi.org/10.3390/make3020021 DOI: https://doi.org/10.3390/make3020021

Downloads

Published

15.03.2024

How to Cite

1.
Minkin D, Brandner LT. Borderline decisions?: Lack of justification for automatic deception detection at EU borders. TATuP [Internet]. 2024 Mar. 15 [cited 2024 Jun. 21];33(1):34-40. Available from: https://www.tatup.de/index.php/tatup/article/view/7100